
OR I G I NAL ART I C L E

Optimal dwelling time prediction for package tour using
K-nearest neighbor classification algorithm

Aria Bisma Wahyutama | Mintae Hwang

Department of Information and
Communication Engineering, Changwon
National University, Changwon, Republic
of Korea

Correspondence
Mintae Hwang, Department of
Information and Communication
Engineering, Changwon National
University, Changwon, Republic of Korea.
Email: mthwang@cwnu.ac.kr

Funding information
Gyeongnam SW Convergence Cluster 2.0

Abstract

We introduce a machine learning-based web application to help travel agents

plan a package tour schedule. K-nearest neighbor (KNN) classification predicts

the optimal tourists’ dwelling time based on a variety of information to auto-

matically generate a convenient tour schedule. A database collected in collabo-

ration with an established travel agency is fed into the KNN algorithm

implemented in the Python language, and the predicted dwelling times are

sent to the web application via a RESTful application programming interface

provided by the Flask framework. The web application displays a page in

which the agents can configure the initial data and predict the optimal dwell-

ing time and automatically update the tour schedule. After conducting a per-

formance evaluation by simulating a scenario on a computer running the

Windows operating system, the average response time was 1.762 s, and the

prediction consistency was 100% over 100 iterations.

KEYWORD S
dwelling time prediction, K-nearest neighbor classification, machine learning, optimized
schedule, web application

1 | INTRODUCTION

Under the ongoing coronavirus disease (COVID-19) pan-
demic, the number of travelers has decreased sharply
worldwide [1]. Although many residents strongly support
local tourism, they are afraid of contracting COVID-19,
which could cause conflict [2]. Nevertheless, tourism will
inevitably recover and even strengthen compared with
the prepandemic era [2, 3]. Therefore, new and creative
methods should be devised to prepare for tourism recov-
ery after the pandemic with people traveling freely and
frequently. Implementing information and communica-
tion technologies such as machine learning (ML) to
determine the optimal dwelling time (i.e., how long tour-
ists should stay at tourist spots) can help travel agents

manage package touring. Many travel agents offer pack-
age tours, both domestically and internationally, with
multiple advantages. However, a common problem with
package tours is that they may not provide the appropri-
ate dwelling time, especially when prepared by less expe-
rienced travel agents. If the dwelling time is excessively
long, the tourists feel bored, while if it is very short, the
tourists feel underwhelmed because they cannot enjoy
every spot thoroughly. A tourist’s dwelling time affects
the overall package tour quality, even creating a lousy
impression on the tourist if it is inadequate. ML technol-
ogy may help travel agents prevent this problem by pre-
dicting optimal dwelling times.

In global statistics, over 2.4 billion international tour-
ists traveled in 2019, making tourism a representative

Received: 24 December 2022 Revised: 22 February 2023 Accepted: 30 March 2023

DOI: 10.4218/etrij.2022-0454

This is an Open Access article distributed under the term of Korea Open Government License (KOGL) Type 4: Source Indication + Commercial Use Prohibition +

Change Prohibition (http://www.kogl.or.kr/info/licenseTypeEn.do).

1225-6463/$ © 2023 ETRI

ETRI Journal. 2024;46(3):473–484. wileyonlinelibrary.com/journal/etrij 473

https://orcid.org/0000-0003-0327-0543
mailto:mthwang@cwnu.ac.kr
https://doi.org/10.4218/etrij.2022-0454
http://www.kogl.or.kr/info/licenseTypeEn.do
http://wileyonlinelibrary.com/journal/etr2
http://crossmark.crossref.org/dialog/?doi=10.4218%2Fetrij.2022-0454&domain=pdf&date_stamp=2023-08-07


income source for any country [4]. The United Nations
World Tourism Organization has confirmed that cultural
tourism is essential, with 89% of domestic tourism admin-
istrators using cultural tourism as a part of their policies.
Furthermore, over 39% of international tourists travel
abroad to enjoy cultural tourism [5]. Hence, many travel
agents worldwide are interested in managing personal-
ized package tours.

In this study, we developed an ML model to predict
the tourists’ optimal dwelling times in spots by imple-
menting the K-nearest neighbor (KNN) algorithm on a
web application. The model uses tourists’ personal infor-
mation such as age, health condition, group type, and
tour experience, along with weather conditions and
selected tourist spots as features or parameters. Travel
agents can then generate predictions using the web appli-
cation that automatically creates an optimized tour
schedule as a table. Once the full schedule has been
determined, travel agents can share it with their clients
via a mobile application. The predictions made by the
ML model can assist travel agents in deciding the dwell-
ing time, which in turn can increase the quality of pack-
age tours.

For the proposed system, we first collect raw tourist
data in a cloud database (DB) provided by Google Fire-
base. A web application then obtains the data from the
cloud DB, formats the data in the desired format, and
feeds them into an ML-based KNN algorithm to predict
the dwelling time via a RESTful (Rest) application pro-
gramming interface (API). The Rest API is developed
using the PHP + Laravel and Python + Flask frame-
works. The system then uploads the prediction results
and new schedules to the cloud DB for display on the
web application to the travel agents and on the mobile
application to clients. KNN classification predicts the
optimal dwelling time based on nine parameters: age,
temperature, humidity, sex, health conditions, tour expe-
rience, weather conditions, group type, and tourist spot.
Based on these parameters, the prediction belongs to one
of eight classes (time in minutes): 60, 90, 120, 150,
180, 210, 240, and 270.

The remainder of this paper is organized as follows.
Section 2 discusses related work, research results, and
their contributions and limitations. Section 3 describes
the system design and architecture, including the algo-
rithm flowchart, architecture, requirements, and initial
user interface design. Section 4 describes the implemen-
tation of the Rest API as well as web and mobile applica-
tions. Section 5 presents the performance evaluation of
the system by measuring the response time, ML model
performance, and consistency. Finally, Section 6 presents
conclusions and directions of future work.

2 | RELATED WORK

Tourists or visitors are individuals who voluntarily leave
familiar environments where they usually reside to visit
another place. Tourists typically engage in specific activi-
ties regardless of their distance from familiar environ-
ments. Tourism is a temporary, short-term movement
that occurs for less than 1 year to visit a particular desti-
nation and perform certain activities, including leisure,
day visits, and excursions [6]. On the other hand,
researchers have shown that ML can solve many real-
world problems, such as predicting traffic for intelligent
transportation and managing multiple essential aspects
of agriculture [7, 8]. Furthermore, ML optimization has
attracted the attention of many researchers [9]. Because
of its versatility, we aim to apply ML to tourism.

Researchers often classify ML into supervised, semisu-
pervised, unsupervised, and reinforcement learning
approaches and consider learning models such as classifica-
tion, dimensionality reduction, regression, and clustering.

We use a supervised ML method because the DB for
training contains several features related to tourists’ per-
sonal information and preferred dwelling times. Because
the dwelling time is categorized into several time frames,
we adopt a classification algorithm as the learning model.
Table 1 summarizes various related studied on ML
applied to tourism [10–16].

The related work reveals challenges and problems. For
instance, 5G technology is considered in [10], but it is
unevenly available globally. Underdeveloped countries face
challenges to implement 5G technology. Consequently, the
solution in Peng and others [10] is limited to developed
countries. In Srisawatsakul and Boontarig [11], a recom-
mender based on Instagram photographs can only be
employed by Instagram users, primarily teenagers, and
young adults. Consequently, older adults are excluded
because most of them are not “technology friendly” and
obviously do not have Instagram accounts. In Nagar and
others [12], the scope is limited to those traveling to seek
medical attention, making the proposal unsuitable for regu-
lar tourists. In Afsahhosseini and Al-Mulla [13], ML is
applied to each individual to obtain a personalized result
instead of a group schedule, as is usually the case for pack-
age tours. Overall, previous studies have some research gaps
that we aim to address. For example, in earlier studies
[14, 15], the use of robots can be expensive and difficult to
implement, particularly in underdeveloped countries. In
Parvez [16], ML technology is mainly intended to serve
automation systems, especially for hotel customer services.
Thus, the establishment must prepare the proper infrastruc-
ture, and specialized staff must maintain the system. If not
carefully observed, additional costs may be incurred.

474 WAHYUTAMA and HWANG



The novelty of our study is the combination of ML to
predict the optimal dwelling times when visiting certain
tourist spots, instead of simply developing a system to rec-
ommend tourist spots. The proposed system does not
require any additional hardware or specialized software and
can be used for any tourism purpose, either for individuals
or groups. Thus, the system can be used anywhere. The ML
model is implemented on a web application that merges the
prediction results into a tour schedule controlled by travel
agents. Therefore, the system can help travel agents
improve their service quality and provide package tours that
everyone can enjoy. This study extends our previous work
[17–19], in which we developed a package tour manage-
ment system using geofences and digital game-based learn-
ing. In this study, we added dwelling time prediction as a
main feature of the package tour management system.

3 | DESIGN OF PROPOSED
SYSTEM

In this section, we discuss the system architecture,
including the dataflow from each component, algorithms

of the web application and Rest API, requirements for
developing the system for mobile applications, Rest API,
and initial user interface design.

3.1 | System architecture

The proposed system uses a web application to obtain
tourist information from a cloud DB. After receiving tour-
ists’ information, the web application calls the Rest API
to pass the tourists’ information to the ML model and
predict dwelling times, which are then uploaded to the
cloud DB. After uploading, the web application displays
the dwelling times along with an updated schedule show-
ing the prediction results. Figure 1 shows the system
architecture. The system is used only after training the
ML model, as described in Section 4.

A cloud DB is selected because we adopted it in previ-
ous research [17–19], rendering the creation of a new DB
to predict the dwelling times inconvenient. Additionally,
the cloud DB offers native and seamless communication
for sending and retrieving data from multiple platforms,
such as web, Android, and iOS applications. Therefore,

TAB L E 1 Summary of related work on ML applied to tourism.

Study Contribution

A human-guided machine learning approach
for 5G smart tourism IoT [10]

An ML model is used to help tourists select a particular destination by
using the Internet of Things and human-guided ML classification
based on tourist behaviors

Tourism recommender system using machine learning based
on user’s public Instagram photos [11]

A Google Cloud Vision API and recommendation algorithm are used
to generate a recommendation of tourist attractions from social
media. Photos available on social media (Instagram) are collected
and mined and fed into the API to extract terms and features from
the images. Then, the result is fed to the content-based
recommender

A review on machine learning applications in medical
tourism [12]

ML technology is used to help tourists that travel abroad to seek
medical help by recommending a hospital or activity that would
help treat a disease

Machine learning in tourism [13] ML embedded into three tourism phases: pretrip, trip, and posttrip. In
the pretrip phase, ML predicts tourist demand, while ML provides
a recommendation of tourist attractions during a trip. In the
posttrip phase, ML analyzes reviews of the tour experience to
extract helpful information

Robots in tourism: A research agenda for tourism
economics [14]

The study considers tourism supply, tourism demand, and destination
management. It critically assesses state-of-the-art research on the
economics of service robots in the tourism industry

Machine learning of robots in tourism and hospitality:
interactive technology acceptance model (iTAM)–cutting
edge [15]

This study analyzes how consumers perceive advanced artificial
intelligence robots in the hospitality and tourism industries.

Use of machine learning technology for tourist and
organizational services: high-tech innovation in the
hospitality industry [16]

This study pinpoints the present and upcoming changes brought on
by ML systems in the hospitality sector to make the holiday
experience more enjoyable and simplify processes

Abbreviations: API, application programming interface; IoT, Internet of Things; ML, machine learning.

WAHYUTAMA and HWANG 475



the system can be expanded to another platform without
requiring additional configurations. As web applications
and ML models cannot communicate directly, an inter-
face is required to handle the communication. We use a
Rest API that also acts as a pivot between the web appli-
cation and ML model. We detail the latest API develop-
ments below.

3.2 | System flowchart

Here, we describe the flowchart to determine the input,
process, and output of the application before it is encoded
using a programming language. The flowchart explanation
is intended to support troubleshooting and error handling.

3.2.1 | Web application

Travel agents can use the web application to create a
schedule based on predicted dwelling time. For the predic-
tion, the travel agent first inputs and configures the tourist
spot conditions, including the weather state, temperature,
and humidity at the time of the visit. Then, the web appli-
cation sends a request to the Rest API. After receiving a
response, the predicted schedule appears on the screen.
Figure 2 shows the flowchart of the web application.

3.2.2 | Rest API

The execution of the Rest API is slightly more compli-
cated than that of the web application because it is the
backbone of the entire system that communicates with
the server and handles all the data and information.
When the web application initiates a Rest API request, it

triggers the PHP Rest API to collect tourist data from the
cloud DB and convert them into an array. The PHP Rest
API encodes the array in JavaScript Object Notation
(JSON) before executing a POST request to another API
written using Python and containing the ML model.
When sending a request, the Python Rest API loads the
trained ML model, converts the JSON data into a Data-
Frame format, and feeds the data to the ML model to pre-
dict the dwelling times. Finally, the predictions are
returned to the PHP Rest API for uploading to the cloud
DB, and the tour schedule is updated.

The two Rest APIs in the system serve different pur-
poses. The PHP Rest API is responsible for obtaining the
stored data from the cloud DB, processing it into the
JSON format, executing the POST request to the Python
Rest API, and uploading the dwelling time predictions to
the cloud DB. The Python Rest API loads the trained ML
model and predicts the dwelling times. Therefore, the
PHP Rest API connects directly with the web application
and Python Rest API, whereas the Python Rest API con-
nects only with the PHP Rest API. Figure 3 presents a
flowchart of the Rest API.

The ML model requires a standalone Python Rest API
because the system web application uses the PHP pro-
gramming language with the Laravel framework and
thus cannot natively communicate with the ML model.
Therefore, an additional REST API that uses the Flask
framework is required for communication.

3.3 | System requirements

The main components of the proposed system are the
web application and Rest API, whose requirements are

F I GURE 2 Flowchart of web application.

F I GURE 1 System architecture with required components

and their relations.

476 WAHYUTAMA and HWANG



discussed in this section. Figures 2 and 3 can be analyzed
to determine the requirements for each component.

The primary requirements of the web application are
obtaining tourist spot conditions, requesting the Rest
API, obtaining predictions, and presenting the prediction
results along with a new schedule.

For the Rest API, the primary requirements are
obtaining tourist information from the cloud DB, con-
verting the data into the correct form (JSON or Data-
Frame), executing the ML model to predict the dwelling
times, and delivering the results to the cloud DB.

Tables 2 and 3 list the requirements for the web appli-
cation and Rest API, respectively.

3.4 | User interface design

We propose an initial design for the web application user
interface. The main user interface consists of pages for
tourist spot configuration and schedule display. On the
tourist spot configuration page shown in Figure 4, a
travel agent can configure the weather, temperature, and
humidity for a tour schedule. A button to predict the
dwelling times is located below the configuration box.
Once the dwelling times are predicted, the schedule dis-
play page appears, showing the original and predicted
schedules in separate tables. The travel agent can config-
ure the weather information of each tourist spot for each
day according to the schedule. Figure 5 shows the sched-
ule display page containing the original schedule (top),
which is editable or can be removed, and predicted
schedule (bottom) obtained from the ML model.

4 | SYSTEM IMPLEMENTATION

The system implementation involves the ML model,
mobile application, and Rest API. In addition, the

TABL E 2 Requirements for web application.

Requirement Description

Get tourist spots
condition
configuration

The web application can retrieve
conditions such as weather,
temperature, and humidity

Hit Rest API URL The web application can hit the
Rest API URL with the
intended method while
sending all necessary
parameters

Get dwelling time
prediction

The web application can get the
dwelling time prediction from
the cloud DB

Create new schedule
with predicted
dwelling times

The web application can create
new schedules with the
dwelling time prediction,
including starting and stopping
times

Abbreviations: API, application programming interface; DB, database.

TABL E 3 Requirements for Rest API.

Requirement Description

Get tourists’
information

The PHP Rest API can obtain the
tourists’ information from the
cloud DB

Represent tourist’s
information in JSON
format

The obtained tourists’ information
is represented in the JSON
format for the Python Rest API

Execute POST request to
Python Rest API

The PHP Rest API can execute a
POST request to the Python
Rest API and pass the JSON
format data as parameter

Convert JSON to
DataFrame

The Python Rest API converts the
retrieved JSON format data into
DataFrame to be more suitable
for the ML model

Predict dwelling times The Python Rest API can predict
the dwelling times after feeding
the DataFrame data to the
trained ML model

Return prediction result The Python Rest API can return
the dwelling time predictions to
the PHP Rest API

Upload prediction result
to cloud DB

The PHP Rest API uploads the
predictions to cloud DB for
loading on the web application

Abbreviations: API, application programming interface; DB, database;
JSON, JavaScript Object Notation.

F I GURE 3 Flowchart of Rest application programming

interface (API).

WAHYUTAMA and HWANG 477



environments for their building, development, and imple-
mentation are presented.

4.1 | Implementation environment

We divided the implementation environment of the sys-
tem into categories of computer, ML, other API, and web
applications. The computer ran Windows 11 version
21H2 build 22000.588 and was equipped with an Intel
i7-10 700 processor and 32 GB of memory. For develop-
ing the ML model, we used Anaconda version 2.1.4 with
Python version 3.8.9. The built-in Python library pro-
vided by Anaconda was used as is. We also used Ana-
conda as the Python-integrated development
environment with Jupyter Notebook version 6.4.5 to
develop the ML model.

We coded the PHP Rest API using the PHP program-
ming language and Laravel framework, while the Python
Rest API was coded using Python, the same program-
ming language used for developing the ML model and a
lightweight framework called Flask (version 2.1). We
coded the entire system using Visual Studio Code version
1.68.1. In addition, the Postman tool version 9.22.2 was
used to verify the Rest API results.

The web application was developed using the PHP
programming language version 8.1.7 in the Visual Studio
Code editor like the Rest API. In addition, XAMPP ver-
sion 8.1.6, was used to deploy a local server to run the
Rest API. Moreover, the web application was developed
with the Laravel framework version 9, which contains
multiple features to accelerate development, such as fast
routing and powerful dependencies.

4.2 | DB and ML model

Determining the features for prediction before developing
an ML model is crucial. Based on [20, 21], we determined
nine features and one label for the DB. In addition, the
DB had two data types: integer (age, temperature, humid-
ity, and dwelling time) and string (sex, health condition,
weather condition, group type, tourist spot, and tour
experience). The integer features were filled with any
number, whereas the string features could only take fixed
values to simplify ML model training. Specifically, sex
had values male or female, and health condition had
values healthy, minor complication, and major complica-
tion. In addition, weather had values sunny, cloudy,
rainy, and snowy. The group type had fixed values family,
worker, male friends, female friends, and student. Tourist
spots had 11 fixed values: education, water park, culture,
sports, religion, amusement park, historical site, shop-
ping mall, tracking, beach, and museum. Finally, tour
experience had a value of yes or no.

A minor health complication referred to conditions
that affected the tourist’s activity but were not considered
life-threatening, such as influenza, cold, or light fever. A
major health complication was considered as life-
threatening or as a condition that can suddenly relapse,
such as coronary artery disease, disability, or stroke.
Table 4 lists the DB features and their descriptions.

We collected the DB in collaboration with Dot of Cor-
ner, a well-established Indonesian travel agency and con-
sultancy company that has been in business for over
15 years. Data were collected from December 2021 to
May 2022, resulting in 30 000 datapoints containing mul-
tiple tourist scenarios for two- and four-season countries.
The data were carefully collected by analyzing previous
package tour schedules and conducting in-depth meet-
ings with the Dot of Corner’s staff and various tourist
representatives. Therefore, we did not require to perform
data cleaning when preparing the data for the ML model
because it was implicit throughout data collection.

As mentioned above, we used classification because
the predicted dwelling time required was a specific num-
ber (e.g., 110, 105, and 215 min) instead of arbitrary num-
bers (e.g., 246.45 and 157.27 min), which can be obtained

F I GURE 5 User interface for schedule display.

F I GURE 4 User interface for tourist spot configuration.

478 WAHYUTAMA and HWANG



from regression. Additionally, when a travel agent pre-
pares a package tour schedule, a detailed dwelling time
with resolution of minutes is challenging to determine,
especially when combined with other nonvisiting sched-
ules (e.g., lunchtime and sleeping time). Furthermore,
package tours do not usually involve strict time-sensitive
activities that require exact dwelling times. Thus, the
classification algorithm only classifies the outputs into
one of several fixed classes. The dwelling times in the DB
were divided into eight classes/timeframes (in minutes):
60, 90, 120, 150, 180, 210, 240, and 270. We excluded
dwelling times shorter than 60 min and longer than
270 min because they are outside tourists’ usual stays in
a spot, given the various activities usually included in
package tours. The predicted dwelling times corre-
sponded to each tourist. For example, five predictions
were made for five tourists. Therefore, the final dwelling
times for creating the general tour schedule were the
average of the predictions across tourists.

Because the classification algorithm cannot process
strings, all the features that use string data types were
encoded using a Python library called Ordinal Encoder,
which assigns a number to each unique string. We used

ordinal encoding instead of the common one-hot encod-
ing because the latter represents categorical variables as a
binary vector designated to a new column in the
DB. Consequently, the number of columns increases,
thereby reducing the performance of the ML model. In
contrast, the ordinal encoder converts each unique string
into a number in its original column. For example, entry
sunny in the weather condition is converted into 0, cloudy
into 1, rainy into 2, and snowy into 3. We applied the
ordinal encoder to each string feature.

Several classification algorithms were compared in
Wahyutama and Hwang [22] to determine the best one
for our system. The KNN algorithm provided the best
performance and consistency in multiple comparison sce-
narios, making it suitable for our system.

4.3 | Rest API implementation

Implementing the PHP Rest API was straightforward,
because the web application was written in PHP. After
obtaining all tourist data from the cloud DB as an array,
function Client() in the Laravel framework called the
Python Rest API. Then, we defined the Python Rest API
URL (Uniform Resource Locator) as the POST method
and added tourist data from the cloud DB as the parame-
ter. After execution, the system retrieved data from the
Python Rest API to update the cloud DB. We chose the
POST method to send data because many parameters
were required for prediction, rendering the GET
method inconvenient. The source code for the PHP Rest
API can be found in the GitHub repository, available
at https://github.com/abismaw/DwellingTimePrediction
(DwellingTimeController.php).

The Python Rest API was developed in Python and
used the Flask framework. Flask is a lightweight Web
Server Gateway Interface developed for Python, and it
has an extension called Flask-RESTful that offers addi-
tional features and functions for developers to create a
Rest API.

To use Flask, we created and activated a virtual envi-
ronment that ran Python 3 (as recommended by Flask)
in terminals by executing command “source/bin/acti-
vate.” After creating the virtual environment, we
installed the Flask library using PIP (Peripheral Inter-
change Program) command “pip install flask.” Once
installation was complete, the flask was imported into a
Python file. Other libraries required for the Rest API to
work correctly included Pandas to create DataFrame,
Pickle to import the trained ML model, and Ordinal
Encoder to encode the string features.

When the Python Rest API was triggered by the PHP
Rest API, it retrieved the JSON request and appended the

TAB L E 4 Characteristics of DB for ML model.

DB characteristic Description

Age Different age groups have different
preferences of dwelling time at a
tourist spot

Sex Male and female persons may have
different preferences of dwelling
time

Health condition Many tourist spots are not
appropriate or suitable depending
on the health condition, thus
affecting the dwelling time

Weather condition The weather, such as sunny, cloudy,
or rainy, can affect the dwelling
time

Group type tourist spot Group types include friends, family,
and workers. Travel agents fill the
tourist spot information.

Tour experience This characteristic indicates whether
a tourist has visited a spot

Temperature The temperature during the visit can
determine the dwelling time

Humidity The humidity during the visit can
determine the dwelling time

Dwelling time The optimal dwelling time is
predicted by the ML model based
on available information

Abbreviations: DB, database; ML, machine learning.

WAHYUTAMA and HWANG 479

https://github.com/abismaw/DwellingTimePrediction


data to the DataFrame provided by the Panda library.
After converting every JSON request into a DataFrame,
Ordinal Encoder encoded the string features. DataFrame,
which contained tourist information and weather condi-
tions, was fed into the trained ML model for prediction.
After making various predictions, the average dwelling
time was determined and rounded off to the nearest five
or zero. Finally, the average results and response status
were returned to the web application to be displayed on
the webpage. Typical Rest API results are shown in
Figure 6. Tables 5 and 6 list the pseudocodes of the PHP
and Python Rest APIs, respectively. The source code
for the Python Rest API can be found in the GitHub
repository, available at https://github.com/abismaw/
DwellingTimePrediction (app.py).

4.4 | Web application implementation

The web application was intended to be controlled by
travel agents for scheduling package tours. It was written

in the PHP programming language with the Laravel
framework to speed up development. Users could only
predict the dwelling times if they appropriately gathered
and stored the information of participating tourists in the
cloud DB. A travel agent could access the menu to gener-
ate predictions from the main menu, side navigation bar,
or top navigation bar showing the choices of an active
package tour when clicked.

After selecting the correct package tour, the travel
agent saw a tourist spot configuration containing two
tables. The first table (top) showed a list of tourist spots
and day number, date, and parameter configurations.

The second table (bottom) contained tourist informa-
tion such as age, experience, health condition, group
type, and sex for travel agents to validate the information.
Below the first table, a button for predicting the dwelling
time based on the given information was available.
Figure 7 shows a screenshot of the tourist spot configura-
tion page. After the travel agent clicked the “Predict
Dwelling Time” button, two things occurred. First, the
results were uploaded to the cloud DB and redirected to
the schedule display page, where they could choose the
package tour day to see or modify. Once selected, two
tables appeared, one containing the original schedule at
the top and a new schedule with the predicted dwelling
time at the bottom. The original schedule table contained
the scheduled activity name, beginning and end,
remarks, and a button for editing or deletion. The new
schedule table included similar information showing the
predicted dwelling time. The prediction was automati-
cally added to the start time, resulting in a predicted fin-
ish time, thus creating an optimized schedule for the
package tour to visit a certain tourist spot. Figure 8 shows
a screenshot of a scheduled page. Additionally, the bot-
tom table notified the travel agents of the remaining pre-
dictions of dwelling times.

F I GURE 6 Typical Rest application programming interface

(API) response.

TAB L E 5 Python Rest API pseudocode.

1. Initialize Flask framework

2. Load ML model

3. Set array “content” to tourist’s data from PHP Rest API

4. Initialize DataFrame

5. For x = count (content)

• age = x[‘age’]

• sex = x[‘sex’]

• … (for every required tourist’s information entry)

6. End For

7. Initialize Ordinal Encoder

8. Encode sex, health, group type, tour experience, tourist spot,
and weather condition numerically

9. Predict dwelling time using loaded ML model

10. Calculate average prediction

11. Return average prediction

Abbreviations: API, application programming interface; ML, machine
learning.

TABL E 6 PHP Rest API pseudocode.

1. Get tourists’ raw data from cloud DB

2. Remove existing null array

3. Get age, health, sex, group type, tour experience, tourist
spot, weather condition, temperature, and humidity
information per tourist

4. Push selected data into a new array

5. Call Python Rest API URL link using function Client()

6. Put a new array containing selected data as parameter

7. Get response from the Python Rest API

8. Save response to cloud DB

9. Update tour schedule in cloud DB

Abbreviations: API, application programming interface; DB, database.

480 WAHYUTAMA and HWANG

https://github.com/abismaw/DwellingTimePrediction
https://github.com/abismaw/DwellingTimePrediction


5 | PERFORMANCE EVALUATION

Two performance evaluations were conducted using the
proposed system. In the first evaluation, we measured the
response time, which is the time elapsed between click-
ing the “Predict Dwelling Time” button on the tourist
spot configuration page and the prediction appearing on
the schedule display page. To obtain the response time,
we calculated the corresponding difference in Epoch
Time (UNIX Timestamps). The measurements were
repeated 100 times to obtain the average time required as

the final response time. Figure 9 shows the response time
per measurement.

The response time was evaluated using Google
Chrome version 100.0.4896.60 through an Internet con-
nection provided by KT via a LAN (local area network)
cable with download and upload speeds of 824 and
540 Mbps, respectively. We conducted a performance
evaluation in a good environment and hosted the Rest
API on a local server provided by XAMPP.

After 100 iterations, the average response time for
generating the dwelling time prediction was 1761.7 ms,
with the fastest time being 1688 ms and the slowest one
being 2202 ms. Furthermore, when feeding the same
input features 100 times, the ML model predicted the
same dwelling time at every iteration.

In the second evaluation, we measured the accuracy,
confusion matrix, classification measures, F-score, and
coefficients of determination (R2) of the ML model using
the built-in functions from Python. Table 7 lists the per-
formance indicators of the ML model.

6 | DISCUSSION AND
LIMITATIONS

After implementing the web application and Rest APIs,
the dwelling time prediction was considered successful.
The model produced highly accurate predictions in mul-
tiple scenarios regardless of the number of tourists. As
shown in Table 7, the model generated high accuracy
and R2 values, indicating accurate predictions. The con-
fusion matrix shows that the model predicted each class
almost correctly with few false predictions (less than
100 per class). Furthermore, the precision, recall, and
F1-score ranged from 0.82 to 0.98. Finally, the F-test
revealed four less relevant features (sex, group type, tour-
ist spot, and weather) and five highly relevant features
(age, health, tour experience, temperature, and humid-
ity). Additionally, Figure 10 shows the F-test results plot-
ted on a bar graph.F I GURE 8 Screenshot of schedule display page after

predicting dwelling times.

F I GURE 9 Response time for predicting dwelling time.

F I GURE 7 Screenshot of configuration page for dwelling time

prediction.

WAHYUTAMA and HWANG 481



Although the ML model and entire system performed
satisfactorily, several limitations remain to be addressed.
Tour guides or travel agents manually included weather
conditions, temperature, and humidity. Furthermore, the
dwell time was limited to eight classes. Therefore, the
system predicted activities requiring less than 60 min and
more than 270 min as 60 min and 270 min, respectively.

Another limitation is that the prediction features were
only available for the web applications, even if an
updated schedule with the predicted dwelling time could
be seen in the mobile application for tourists. Therefore,
if a tour guide required the generation of new predictions
in the middle of a tour, this could only be performed via
the web application.

7 | CONCLUSION AND FUTURE
WORK

We introduce an ML-based system for tourist dwelling
time prediction to manage package tours implemented in
a web application. The prediction helps a travel agent to
find the optimal dwelling time for the tourists to stay at a
particular spot to avoid boredom owing to a long stay or
underwhelming owing to a brief stay.

A classification problem was formulated because the
dwelling time was estimated as a specific timeslot instead
of a continuous time value. After comparing several

TAB L E 7 ML model performance measure result (accuracy = 0.9075).

(A) Confusion matrix

Class label

60 90 120 150 180 210 240 270

849 11 1 2 1 0 0 0

15 642 12 3 0 0 0 0

0 11 682 21 5 1 0 0

0 6 33 945 66 6 4 0

0 0 5 98 926 35 9 0

0 0 0 9 70 607 49 1

0 0 0 0 4 36 525 15

0 0 0 0 0 7 19 269

(B) Classification performance

(C) F-testClass label Precision Recall F1-score Support

60 0.98 0.98 0.98 864 Feature 0: 475.462219

90 0.96 0.96 0.96 672 Feature 1: 33.636046

120 0.93 0.95 0.94 720 Feature 2: 259.073428

150 0.88 0.89 0.88 1060 Feature 3: 18.162922

180 0.86 0.86 0.86 1073 Feature 4: 378.652529

210 0.88 0.82 0.85 736 Feature 5: 38.023789

240 0.87 0.91 0.89 580 Feature 6: 85.724528

270 0.94 0.91 0.93 295 Feature 7: 1234.549124

Accuracy 0.91 6000 Feature 8: 719.961219

Macro average 0.91 0.91 0.91 6000 (D) R2

Weighted average 0.91 0.91 0.91 6000 0.9682804992470979

F I GURE 1 0 Bar graph of F-test scores.

482 WAHYUTAMA and HWANG



classification algorithms, we found that the KNN classifi-
cation algorithm yielded the best results when a tailored
DB was used. After hyperparameter tuning, we trained
an ML model and exported it as a file for a Rest API. We
implemented two Rest APIs, a PHP Rest API connected
to the web application and a Python Rest API managing
the data in the cloud DB to convert the data into a suit-
able format. The Python Rest API was connected to the
PHP Rest API and ML model, which predicted the dwell-
ing time and returned the data to the PHP Rest API.

To predict the dwelling time in the web application, a
travel agent must configure tourist spot conditions, such
as weather state, temperature, and humidity, on the cor-
responding page and then click the button for prediction.
When clicked, the Rest API obtained the tourist informa-
tion, combined and formatted all the necessary data, fed
the data to the trained ML model for prediction, and
uploaded the prediction results to the cloud DB. After
generating and uploading the predictions, the web appli-
cation updated the tour schedule based on the new data.

We evaluated the system performance by measuring
100 times the response time after clicking on the generate
prediction button until the results were displayed on the
web application. On average, prediction and display
required 1.762 s. Furthermore, we observed consistent
results from the ML model over 100 measurements.

In future work, a mobile application with the same
functionalities will be developed while allowing tour
guides to predict new dwelling times during tours. Fur-
thermore, instead of manually inputting the weather con-
ditions, temperature, and humidity, a public weather
forecast API will be integrated to fully automate the col-
lection of these data. To further enhance the performance
of the ML model, the application will be distributed to
several travel agents to obtain feedback from tourists,
especially regarding dwelling time predictions, after fully
developing the package tour management application.

CONFLICT OF INTEREST STATEMENT
The authors declare that there are no conflicts of interest.

ORCID
Aria Bisma Wahyutama https://orcid.org/0000-0003-
0327-0543

REFERENCES
1. Y. Kristiana, R. Pramono, and R. Brian, Adaptation strategy of

tourism industry stakeholders during the COVID-19 pandemic:
a case study in Indonesia, J. Asian Financ. Econ. Bus. 8 (2021),
213–223.

2. H. Kamata, Tourist destination residents’ attitudes towards tour-
ism during and after the COVID-19 pandemic, Curr. Issue Tour.
25 (2022), 134–149.

3. H. Zhang, H. Song, L. Wen, and C. Liu, Forecasting tourism
recovery amid COVID-19, Ann. Tour. Res. 87 (2021), 103149.

4. The World Bank, International tourism, number of arrivals,
2020. https://data.worldbank.org/indicator/ST.INT.ARVL [last
accessed December 2022].

5. G. Richards, Cultural tourism: a review of recent research and
trends, J. Hosp. Tour. Manag. 36 (2018), 12–21.

6. M. A. Camilleri, The tourism industry: an overview, In Travel
marketing, tourism economics and the airline product, Cham,
Switzerland, Springer, 2018, 3–27.

7. G. Meena, D. Sharma, and M. Mahrishi, Traffic prediction for
intelligent transportation system using machine learning, (Proc.
3rd International Conference on Emerging Technologies in
Computer Engineering: Machine Learning and Internet of
Things, Jaipur, India), 2020, pp. 145–148.

8. S. Sun, Z. Cao, H. Zhu, and J. Zhao, A survey of optimization
methods from a machine learning perspective, IEEE Trans.
Cybern. 50 (2020), 3668–3681.

9. K. G. Liakos, P. Busato, D. Moshou, S. Pearson, and D.
Bochtis, Machine learning in agriculture: a review, Sensors 18
(2018), 2674.

10. R. Peng, Y. Lou, M. Kadoch, and M. Cheriet, A human-guided
machine learning approach for 5G smart tourism IOT, Elec-
tronics 9 (2020), 947.

11. C. Srisawatsakul, and W. Boontarig, Tourism recommender sys-
tem using machine learning based on user’s public Instagram
photos, (Proc. 5th International Conference on Information
Technology Chonburi, Thailand), 2020, pp. 276–281.

12. R. Nagar, Y. Singh, V. Jaglan, and Meenakshi, A review on
machine learning applications in medical tourism, (Fourth
International Conference on Computational Intelligence and
Communication Technologies, Sonepat, India), 2021,
pp. 208–215.

13. F. Afsahhosseini, and Y. Al-Mulla, Machine learning in tour-
ism, (Proc. 3rd International Conference on Machine Learning
and Machine Intelligence, Hangzhou, China), 2020, pp. 53–57.

14. S. Ivanov and C. Webster, Robots in tourism: a research agenda
for tourism economics, J. Tour. Econ. 26 (2020), 1065–1085.

15. H. Go, M. Kang, and S. C. Suh, Machine learning of robots in
tourism and hospitality: interactive technology acceptance model
(iTAM)–cutting edge, J. Tour. Rev. 75 (2020), 625–636.

16. M. O. Parvez, Use of machine learning technology for tourist
and organizational services: high-tech innovation in the hospi-
tality industry, J. Tour. Futures 7 (2021), 240–244.

17. A. B. Wahyutama and M. Hwang, Implementation and perfor-
mance evaluation of package tour management application
using geofence technology, J. Korea Inst. Inf. Commun. Eng. 26
(2022), 85–93.

18. A. B. Wahyutama and M. Hwang, Design and implementation
of digital game-based contents management system for package
tour application, J. Korea Inst. Inf. Commun. Eng. 26 (2022),
872–880.

19. A. B. Wahyutama and M. Hwang, Implementation of digital
game-based learning feature for package tour management
application, J. Korea Inst. Inf. Commun. Eng. 26 (2022), 1004–
1012.

20. K. S. Dahiya and D. K. Batra, Tourist decision making: explor-
ing the destination choice criteria, Asian J. Manag. Res. 7
(2016), 140–153.

WAHYUTAMA and HWANG 483

https://orcid.org/0000-0003-0327-0543
https://orcid.org/0000-0003-0327-0543
https://orcid.org/0000-0003-0327-0543
https://data.worldbank.org/indicator/ST.INT.ARVL


21. A. B. Wahyutama, and M. Hwang, Design of optimal dwelling
time scheduling for package tour by machine learning-based
prediction model, (Proc. International Conference on Future
Information & Communication Engineering, Jeju Island,
Korea), 2022, pp. 13–17.

22. A. B. Wahyutama and M. Hwang, Comparison of machine
learning algorithms to predict optimal dwelling time for package
tour, Electron. Lett. 58 (2022), 902–904.

AUTHOR BIOGRAPHIES

Aria Bisma Wahyutama received
his BE degree in Informatics Engi-
neering from the Department of
Informatics Engineering, Pasundan
University, Bandung, Indonesia, in
2020. He then received his MSE
degree in Information and Commu-

nication Engineering from the Department of Infor-
mation and Communication Engineering, Changwon
National University, Changwon, Republic of Korea, in
2022 and is continuing his PhD studies at the same
institution. His research interests are web and mobile
programming, database design, digital game-based
learning, IoT applications, and related topics.

Mintae Hwang received his BS,
MS, and PhD degrees in Computer
Engineering from the Department of
Computer Engineering, Pusan
National University, Pusan, Republic
of Korea in 1990, 1992, and 1996,
respectively. From 1996 to 1999, he

worked as a senior research member of Protocol Engi-
neering Center, Electronics and Telecommunications
Research Institute, Daejeon, Republic of Korea. Since
1999, he has been a professor at the Department of
Information and Communication Engineering,
Changwon National University, Changwon, Republic
of Korea. His research interests are communication
protocols, database design, IoT applications, machine
learning, smart cities, and related topics.

How to cite this article: A. B. Wahyutama and
M. Hwang, Optimal dwelling time prediction for
package tour using K-nearest neighbor classification
algorithm, ETRI Journal 46 (2024), 473–484.
DOI 10.4218/etrij.2022-0454

484 WAHYUTAMA and HWANG

info:doi/10.4218/etrij.2022-0454



