• 제목/요약/키워드: K-NN 분류 모델

검색결과 39건 처리시간 0.022초

k-Nearest Neighbor와 Convolutional Neural Network에 의한 제재목 표면 옹이 종류의 화상 분류 (Visual Classification of Wood Knots Using k-Nearest Neighbor and Convolutional Neural Network)

  • Kim, Hyunbin;Kim, Mingyu;Park, Yonggun;Yang, Sang-Yun;Chung, Hyunwoo;Kwon, Ohkyung;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • 제47권2호
    • /
    • pp.229-238
    • /
    • 2019
  • 목재의 결점은 생장과정에서 또는 가공 중에 다양한 형태로 발생한다. 따라서 목재를 이용하기 위해서는 목재의 결점을 정확하게 분류하여 용도에 맞는 목재 품질을 객관적으로 평가할 필요가 있다. 하지만 사람에 의한 등급구분과 수종구분은 주관적 판단에 의해 차이가 발생할 수 있기 때문에 목재 품질의 객관적 평가 및 목재 생산의 고속화를 위해서는 컴퓨터 비전을 활용한 화상분석 자동화가 필요하다. 본 연구에서는 SIFT+k-NN 모델과 CNN 모델을 통해 옹이의 종류를 자동으로 구분하는 모델을 구현하고 그 정확성을 분석해보고자 하였다. 이를 위하여 다섯 가지 국산 침엽수종으로부터 다양한 형태의 옹이 이미지 1,172개를 획득하여 학습 및 검증에 사용하였다. SIFT+k-NN 모델의 경우, SIFT 기술을 이용하여 옹이 이미지에서 특성을 추출한 뒤, k-NN을 이용하여 분류를 진행하였으며, 최대 60.53%의 정확도로 분류가 가능하였다. 이 때 k-index는 17이었다. CNN 모델의 경우, 8층의 convolution layer와 3층의 hidden layer로 구성되어있는 모델을 사용하였으며, 정확도의 최대값은 1205 epoch에서 88.09%로 나타나 SIFT+k-NN 모델보다 높은 결과를 보였다. 또한 옹이의 종류별 이미지 개수 차이가 큰 경우, SIFT+k-NN 모델은 비율이 높은 옹이 종류로 편향되어 학습되는 결과를 보였지만, CNN 모델은 이미지 개수의 차이에도 편향이 심하지 않아 옹이 분류에 있어 더 좋은 성능을 보였다. 본 연구 결과를 통해 CNN 모델을 이용한 목재 옹이의 분류는 실용가능성에 있어 충분한 정확도를 보이는 것으로 판단된다.

k-NN 분류 모델의 학습 데이터 구성에 따른 PIC 보의 하중 충실도 향상에 관한 연구 (Load Fidelity Improvement of Piecewise Integrated Composite Beam by Construction Training Data of k-NN Classification Model)

  • 함석우;전성식
    • Composites Research
    • /
    • 제33권3호
    • /
    • pp.108-114
    • /
    • 2020
  • Piecewise Integrated Composite (PIC) 보는 하중 유형에 따라 구간을 나누어, 각 구간마다 하중 유형에 강한 복합재료의 적층 순서를 배열한 보이다. 본 연구는 PIC 보의 구간을 머신 러닝의 일종인 k-NN(k-Nearest Neighbor) 분류를 통해 나누어 기존에 제시되었던 PIC 보에 비해 우수한 굽힘 특성을 갖게 하는 것이 목적이다. 먼저, 알루미늄 보의 3점 굽힘 해석을 통하여 참조점에서의 3축 특성(Triaxiality) 값 데이터를 얻었고, 이를 통해 인장, 전단, 압축의 레이블을 가진 학습 데이터가 만들어진다. 학습 데이터를 통해 각 면마다 독립적인 k-NN 분류 모델을 구성하는 방법(Each plane)과 전체 면에 대한 k-NN 분류 모델을 구성하는 방법(one part)을 이용하여 k-NN 분류 모델을 생성하였고, 하이퍼파라미터의 튜닝을 통하여 다양한 하중 충실도를 도출하였다. 가장 높은 하중 충실도를 가진 k-NN 분류 모델을 기반으로 보를 매핑(mapping)하였고, PIC 보에 대하여 유한요소 해석을 진행한 결과, 기존에 제시되었던 PIC 보에 비해 최대하중과 흡수 에너지가 커지는 특성을 보였다. 하중 충실도를 수동으로 조절하여 100%로 만든 PIC 보와 비교하였을 때, 최대하중과 흡수에너지가 미소한 차이가 나타났으며 이는 타당한 하중 충실도로 보여진다.

경험적 정보를 이용한 kNN 기반 한국어 문서 분류기의 개선 (Improving of kNN-based Korean text classifier by using heuristic information)

  • 임희석;남기춘
    • 컴퓨터교육학회논문지
    • /
    • 제5권3호
    • /
    • pp.37-44
    • /
    • 2002
  • 문서 자동 분류란 입력 문서에 이미 정해져 있는 특정 범주를 할당하는 작업을 의미하며 이는 문서의 효율적, 체계적 관리를 위하여 그 필요성이 증가하고 있는 실정이다. 현재 국내외에서 기계 학습 방법을 이용한 문서 자동 분류에 대한 연구가 활발히 진행되고 있으나 대부분의 연구는 문서 분류기의 성능 향상을 위한 새로운 학습 모델 제안과 학습 모델간의 상호 비교 연구에 치중되어 있으며 특정 학습 모델을 이용한 분류 시스템의 최적화나 개선 방안에 대한 연구는 다소 미흡한 실정이다. 이에 본 논문은 kNN 학습 방법을 이용한 문서 분류 시스템의 성능 향상에 중요한 역할을 하는 파라미터를 정의하고 실험을 통해서 얻은 경험적 정보를 이용한 한국어 문서 분류기 성능 개성 방안을 제안한다. 실험 결과, 이웃 문서들간의 유사도 가중치를 사용하는 분류 함수, 분류 정보를 이용한 자질 선택 방법, 그리고 전역적 분류 방법이 높은 성능을 보였고, 분류 영역에 따라 신중히 결정된 k값을 사용한 지역적 방법도 많은 계산량을 필요로 하는 전역적 방법과 유사한 성능을 보일 수 있음을 확인하였다.

  • PDF

땅밀림 위험지 평가를 위한 기계학습 분류모델 비교 (A Performance Comparison of Machine Learning Classification Methods for Soil Creep Susceptibility Assessment)

  • 이제만;서정일;이진호;임상준
    • 한국산림과학회지
    • /
    • 제110권4호
    • /
    • pp.610-621
    • /
    • 2021
  • 지진 발생과 집중호우에 의해 땅밀림형 산사태 유형으로 분류되는 땅밀림 현상이 전국적으로 광범위하게 나타나고 있다. 산림청은 땅밀림으로 인한 인명 및 재산 피해를 예방하기 위해 땅밀림 우려지 현장조사 판정표를 통해 땅밀림 발생 위험지를 사전에 파악하고 있다. 한편 최근에는 컴퓨터 기술의 발달로 인공지능의 한 분야인 기계학습 분류기법을 이용하여 산지재해 취약성을 평가하거나 자연재해를 예측하고 있다. 따라서 이 연구에서는 기계학습 분류기법인 k-Nearest Neighbor(k-NN), Naive Bayes(NB), Random Forest(RF), 그리고 Support Vector Machine(SVM) 분류모델을 이용하여 땅밀림 발생 위험등급을 분류하였다. 한국치산기술협회의 2018~2020년 조사 자료 4,618개 중에서 땅밀림 현상의 발생 여부를 고려하여 발생지 총 146개소, 그리고 미발생지 146개소를 임의추출하여 292개 자료를 선정하였으며, 이 중 70%에 해당하는 204개소 자료를 훈련자료로 하여 모델을 구축하였다. 전체 자료의 30%에 해당하는 88개 검증자료에 대해 모델을 평가한 결과, k-NN은 0.727, NB는 0.750, RF는 0.807, 그리고 SVM은 0.750의 분류정확도를 보였다. 또한, Kappa 상관계수는 각각 0.534, 0.580, 0.673 및 0.585, 그리고 AUC는 각각 0.872, 0.912, 0.943 및 0.834로 계산되었다. 따라서 땅밀림 위험지역 판정을 위한 기계학습 분류모델은 RF, NB, SVM, 그리고 k-NN 순으로 높은 성능을 보였다. 기계학습 분류모델은 향후 산지토사재해의 예방 및 대응을 위한 기초자료로 활용 가능하며, 땅밀림 재해 관리 및 피해 경감에 위한 정책 개발에 필요한 정보를 제공할 것이다.

k-NN 기법을 이용한 학습자의 학습 행위 데이터의 이상치 분석 (Outlier Analysis of Learner's Learning Behaviors Data using k-NN Method)

  • 윤태복;정영모;이지형;차현진;박선희;김용세
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2007년도 학술대회 1부
    • /
    • pp.524-529
    • /
    • 2007
  • 지능형 학습 시스템은 학습자의 학습 과정에서 수집된 데이터를 분석하여 학습자에게 맞는 전략을 세우고 적합한 서비스를 제공하는 시스템이다. 학습자에게 적합한 서비스를 위해서는 학습자 모델링 작업이 우선시 되며, 이 모델 생성을 위해서 학습자의 학습 과정에서 발생한 데이터를 수집하고 분석하게 된다. 하지만, 수집된 데이터가 학습자의 일관되지 못한 행위나 비예측 학습 성향을 포함하고 있다면, 생성된 모델을 신뢰하기 어렵다. 본 논문에서는 학습자에게서 수집된 데이터를 거리기반 이상치 선별 방법인 k-NN을 이용하여 이상치를 선별한다. 실험에서는 홈 인테리어 컨텐츠 기반에 학습자의 학습 행위에 대한 학습 성향을 진단하기 위한 DOLLS-HI를 이용하여, 수집된 학습자의 데이터에서 이상치를 분류하고 학습 성향 진단을 위한 모델을 생성하였다. 생성된 모델은 이상치 분류전과 비교하여 신뢰가 향상된 것을 확인하였다.

  • PDF

DTW-kNN 기반의 유망 기술 식별을 위한 의사결정 지원 시스템 구현 방안 (Implementation of DTW-kNN-based Decision Support System for Discriminating Emerging Technologies)

  • 정도헌;박주연
    • 산업융합연구
    • /
    • 제20권8호
    • /
    • pp.77-84
    • /
    • 2022
  • 본 연구는 기계 학습 기반의 자동 분류 기법을 적용함으로써 유망 기술의 선정 과정에 활용할 수 있는 의사결정 지원 시스템의 구현 방안을 제시하는 것을 목표로 한다. 연구 수행을 위해 전체 시스템의 아키텍처를 구축하고 세부 연구 단계를 진행하였다. 우선, 유망 기술 후보 아이템을 선정하고 빅데이터 시스템을 활용하여 추세 데이터를 자동 생성하였다. 기술 발전의 개념 모델과 패턴 분류 체계를 정의한 후 자동 분류 실험을 통해 효율적인 기계 학습 방안을 제시하였다. 마지막으로 시스템의 분석 결과를 해석하고 활용 방안을 도출하고자 하였다. 본 연구에서 제안한 동적 시간 와핑(DTW) 기법과 k-최근접 이웃(kNN) 분류 모델을 결합한 DTW-kNN 기반의 분류 실험에서 최대 87.7%의 식별 성능을 보여주었으며, 특히 추세의 변동이 심한 'eventual' 정의 구간에서는 유클리디언 거리(ED) 알고리즘 대비 39.4% 포인트의 최대 성능 차이를 보여주어 제안 모델의 우수함을 확인할 수 있었다. 또한, 시스템이 제시하는 분석 결과를 통해, 대량의 추세 데이터를 입력받아 유형별로 자동 분류하고 필터링하는 과정에 본 의사결정 지원 시스템을 효과적으로 활용할 수 있음을 확인하였다.

k-NN 기법을 이용한 학습자 데이터의 노이즈 선별 방법 (Noise-Reduction of Student's Learning Data using k-NN Method)

  • 윤태복;이지형;정영모;차현진;박선희;김용세
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2006년도 추계학술대회 학술발표 논문집 제16권 제2호
    • /
    • pp.135-138
    • /
    • 2006
  • 사용자 모델링을 위해서는 사용자의 성향 및 행위 등의 다양한 정보를 수집하여 분석에 이용한다. 하지만 사용자(인간)로 부터 얻은 데이터는 기계나 환경에서 수집된 데이터 보다 패턴을 찾기 힘들어 모델링하기 어렵다. 그 이유는 사용자는 사용자의 현재 상태와 상황에 따라 다양한 결과를 보이며, 일관성을 유지 하지 않는 경우가 있기 때문이다. 사용자 모델링을 위해서는 분산되어 있는 데이터에서 노이즈를 선별하고 연관성 있는 데이터를 분류할 수 있는 기술이 필요하다. 본 논문은 사용자로 부터 수집된 데이터를 k-NN(Nearest Neighbor) 기법을 이용하여 노이즈를 선별한다. 노이즈가 제거된 데이터는 의사결정나무(Decision Tree)방법을 이용하여 학습하였고, 노이즈가 분류되기 전과 비교 분석 하였다. 실험에서는 홈 인테리어 학습 컨텐츠인 DOLLS-HI를 이용하여 수집된 학습자의 데이터를 이용하였고, 생성된 학습자 모델링의 신뢰도가 높아지는 것을 확인하였다.

  • PDF

TextRank 알고리즘을 이용한 문서 범주화 (Text Categorization Using TextRank Algorithm)

  • 배원식;차정원
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제16권1호
    • /
    • pp.110-114
    • /
    • 2010
  • 본 논문에서는 TextRank 알고리즘을 이용한 문서 범주화 방법에 대해 기술한다. TextRank 알고리즘은 그래프 기반의 순위화 알고리즘이다. 문서에서 나타나는 각각의 단어를 노드로, 단어들 사이의 동시출현성을 이용하여 간선을 만들면 문서로부터 그래프를 생성할 수 있다. TextRank 알고리즘을 이용하여 생성된 그래프로부터 중요도가 높은 단어를 선택하고, 그 단어와 인접한 단어를 묶어 하나의 자질로 사용하여 문서 분류를 수행하였다. 동시출현 자질(인접한 단어 쌍)은 단어 하나가 갖는 의미를 보다 명확하게 만들어주므로 문서 분류에 좋은 자질로 사용될 수 있을 것이라 가정하였다. 문서 분류기로는 지지 벡터 기계, 베이지언 분류기, 최대 엔트로피 모델, k-NN 분류기 등을 사용하였다. 20 Newsgroups 문서 집합을 사용한 실험에서 모든 분류기에서 제안된 방법을 사용했을 때, 문서 분류 성능이 향상된 결과를 확인할 수 있었다.

Implementation of a Wi-Fi Mesh-based Fire Detection System using Multiple Sensor Nodes

  • Cha-Hun Park;Hyoun-Chul Choi;Myeong-Chul Park
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권11호
    • /
    • pp.163-171
    • /
    • 2024
  • 본 논문은 화재 감지 및 신속한 대응을 위한 Wi-Fi Mesh 기반의 화재 감지 시스템을 제안한다. 기존 화재감지기는 단일 센서 기반으로 화재와 비화재에 대한 판별이 어렵고 다수의 감지기가 독립적으로 동작하기 때문에 상호 연계성이 부족한 문제점을 가진다. 본 논문에서는 다중 센서 기반의 화재감지기를 통하여 K-NN 분류 모델 기반의 화재 감지 시스템을 제시한다. 또한, 화재 감지용 메시 네트워크 구축을 통하여 공간 범위내에 있는 감지기가 상호 연계되어 화재를 감지할 수 있게 한다. 구현된 시스템의 성능평가 결과를 살펴보면, 화재 분류의 TPR(True Positive Rate)는 96.1%, FPR(False Positive Rate)는 0%, 화재와 비화재 분류의 정밀도와 재현율의 조화 평균값에 해당하는 F1-Score는 98.01%로 확인되었고 예측 정확도 ACC(Accuracy)는 98.05%의 우수한 성능을 보였다. 향후, 메시 네트워크 모니터링 및 다중 센서 자가진단 기능 등을 통하여 지능형 화재감지기 시스템으로 발전시키고자 한다.

모델기반 특징추출을 이용한 지역변화 특성에 따른 개체기반 표정인식 (Facial Expression Recognition with Instance-based Learning Based on Regional-Variation Characteristics Using Models-based Feature Extraction)

  • 박미애;고재필
    • 한국멀티미디어학회논문지
    • /
    • 제9권11호
    • /
    • pp.1465-1473
    • /
    • 2006
  • 본 논문에서는 Active Shape Models(ASM)과 상태기반 모델을 사용하여 동영상으로부터 얼굴 표정을 인식하는 방법을 제시한다. ASM을 이용하여 하나의 입력 영상에 대한 얼굴요소특징점들을 정합하고, 그 과정에서 생성되는 모양변수벡터를 추출한다. 동영상에 대해 추출되는 모양변수벡터 집합을 세 가지 상태 중 한 가지를 가지는 상태벡터로 변환하고 분류기를 통해 얼굴의 표정을 인식한다. 분류단계에서는 표정별 표정변화에 따른 변화영역의 차이를 고려한 새로운 유사도 측정치를 제안한다. 공개데이터베이스 KCFD에 대한 실험에서는 제안한 측정치와 기존의 이친 측정치를 사용한 k-NN의 인식률이 k가 1일 때 각각 89.1% 및 86.2%을 보임으로써, 제안한 측정치가 기존의 이진 측정치보다 더 높은 인식률을 나타내는 것을 보인다.

  • PDF