• Title/Summary/Keyword: K-Means clustering algorithm

검색결과 547건 처리시간 0.027초

무선센서 네트워크의 최적화 노드배치에 관한 연구 (A Study On The Optimum Node Deployment In The Wireless Sensor Network System)

  • 최원갑;박형무
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2006년도 하계종합학술대회
    • /
    • pp.99-100
    • /
    • 2006
  • One of the fundamental problems in sensor networks is the deployment of sensor nodes. The Fuzzy C-Means(FCM) clustering algorithm is proposed to determine the optimum location and minimum number of sensor nodes for the specific application space. We performed a simulation using two dimensional L shape model. The actual length of the L shape model is about 100m each. We found the minimum number of 15 nodes are sufficient for the complete coverage of modeled area. We also found the optimum location of each nodes. The real deploy experiment using 15 sensor nodes shows the 95.7%. error free communication rate.

  • PDF

소셜 이미지 분류를 위한 클러스터링 알고리즘 기반 트레이닝 집합 획득 기법의 비교 (A Study on Comparison of Clustering Algorithm-based Methods for Acquiring Training Sets for Social Image Classification)

  • 정진우;이동호
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2011년도 춘계학술발표대회
    • /
    • pp.1294-1297
    • /
    • 2011
  • 최근, Flickr, YouTube 와 같은 사용자 참여형 미디어 공유 및 검색 사이트가 폭발적으로 증가하면서, 이를 멀티미디어 정보 검색 서비스에 효과적으로 활용하기 위한 다양한 연구들이 시도되고 있다. 특히, 이미지에 할당되어 있는 태그를 이용하여 이미지를 효과적으로 검색하기 위한 연구가 활발히 진행 중이다. 그러나 사용자들에 의해 제공되는 소셜 이미지들은 매우 다양한 범위와 주제를 가지고 있기 때문에, 소셜 이미지들의 분류 및 태그 할당을 위한 트레이닝 집합의 획득이 쉽지 않다는 한계점을 가지고 있다. 본 논문에서는 데이터 군집화를 위한 클러스터링 알고리즘들 중 K-Means, K-Medoids, Affinity Propagation 을 활용하여 소셜 이미지 집합으로부터 트레이닝 집합을 획득하기 위한 방법들을 살펴 본다. 또한, 각 알고리즘으로부터 획득한 트레이닝 집합을 이용하여 소셜 이미지를 분류한 결과를 비교 분석한다.

관광객 공유한 사진 및 머신 러닝을 활용한 도시 색채 특성 분석 연구 - 중국 대리시를 대상으로 - (Research on Characterizing Urban Color Analysis based on Tourists-Shared Photos and Machine Learning - Focused on Dali City, China -)

  • 인샤오옌;정태열
    • 한국조경학회지
    • /
    • 제52권2호
    • /
    • pp.39-50
    • /
    • 2024
  • 색채는 중요한 시각적 요소로서 도시 이미지와 사람들의 인식 형성에 중요한 영향을 미친다. 도시환경에서 색채를 정량적으로 분석하는 작업은 복잡한 과정을 필요로 하여 과거에는 실행하기가 어려웠다. 그러나 최근 머신 러닝 기술의 급속한 발전으로 관광객이 공유한 사진을 이용하여 도시 색채를 분석하는 것이 가능해졌다. 본 연구는 중국의 인기 관광지인 대리시를 사례로 선정하여 관광객이 공유한 대리시의 사진을 수집하였으며, 머신 러닝 기술을 결합하여 대규모 도시 색채를 측정하는 방법을 탐색하였다. 구체적으로는 먼저 DeepLabv3+ 모델을 사용하여 ADE20k 데이터 셋을 기반으로 관광객이 공유한 사진의 의미 분할을 수행하여 사진에서 인공 요소를 분리했다. 다음으로 K-means 클러스터링 알고리즘을 사용하여 대리시의 인공 요소의 주요 색상을 추출하고, 이러한 색상 간의 상관관계를 분석하기 위해 인접 매트릭스를 구축했다. 연구 결과에 따르면 대리시의 인공 요소의 주요 색상은 주황-회색이 가장 높은 비율을 차지한다. 또한, 회색 계열의 색상이 다른 색상과 자주 조합되어 사용되는 경향이 있다. 분석에 따르면 대리시의 인공 요소의 색채 특성은 지역의 민족 문화와 불교 문화의 영향을 받는 것으로 나타났다. 본 연구는 색채 분석을 위한 새로운 접근 방법을 제공하며, 연구 결과는 대리시가 관광객의 기대에 부합하는 도시 색채 이미지를 형성하는 데 도움이 될 뿐만 아니라 향후 대리시의 색채 계획을 위한 참고 자료를 제공하고자 한다.

Face Detection for Automatic Avatar Creation by using Deformable Template and GA

  • Park, Tae-Young;Lee, Ja-Yong;Kang, Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1534-1538
    • /
    • 2005
  • In this paper, we propose a method to detect contours of a face, eyes, and a mouth of a person in the color image in order to make an avatar automatically. First, we use the HSI color model to exclude the effect of various light conditions, and find skin regions in the input image by using the skin color defined on HS-plane. And then, we use deformable templates and genetic algorithm (GA) to detect contours of a face, eyes, and a mouth. Deformable templates consist of B-spline curves and control point vectors. Those represent various shapes of a face, eyes and a mouth. GA is a very useful search algorithm based on the principals of natural selection and genetics. Second, the avatar is automatically created by using GA-detected contours and Fuzzy C-Means clustering (FCM). FCM is used to reduce the number of face colors. In result, we could create avatars which look like handmade caricatures representing user's identity. Our approach differs from those generated by existing methods.

  • PDF

정렬되지 않은 3차원 거리 데이터로부터의 NURBS 곡면 모델 생성 기법 (On Constructing NURBS Surface Model from Scattered and Unorganized 3-D Range Data)

  • 박인규;윤일동;이상욱
    • 대한전자공학회논문지SP
    • /
    • 제37권3호
    • /
    • pp.17-30
    • /
    • 2000
  • 본 논문에서는 NURBS (Non-Uniform Rational B-Splines) 곡면 근사에 기반하여 거리 데이터로부터 3차원 곡면 모델을 생성하는 기법을 제안한다 입력으로 이용되는 거리 데이터는 연결 정보가 알려지지 않고 정렬되지 않은 일반적인 3차원 점들의 집합으로 가정한다 제안하는 알고리듬은 초기 모델 추정, 계층적 모델 표현, NURBS 곡면 네트워크 생성의 3단계로 나뉘어진다 초기 모델 추정 단계에서는 K-평균 군집화 기법을 이용하여 다각형면과 삼각형으로 표현되는 근사 모델을 생성하고, 계층적 트리 구조를 이용하여 초기 모델을 표현한다. 계층적 트리 구조로 부터 생성된 사각형면 모델에 의하여 $G^1$ 연속인 NURBS 곡면 네트워크를 효율적으로 생성한다. 제안하는 알고리듬은 초기 모델의 계층적 그래프 해석을 통하여 곡면 네트워크 형성에 필요한 계산량을 감소시켰으며, 또한 정확한 NURBS 제어점 추정을 통하여 근사 오차를 감소시킨다. 모의 실험 결과 거리 데이터로 부터 초기 모델과 다양한 해상도의 NURBS 곡면 네트워크가 효과적으로 생성되었으며 생성된 NURBS 곡면 모델의 근사 오치는 무시할 수 있는 수준임이 관찰되었다.

  • PDF

Adaptive Clustering Algorithm for Recycling Cell Formation: An Application of the Modified Fuzzy ART Neural Network

  • Park, Ji-Hyung;Seo, Kwang-Kyu
    • 한국데이타베이스학회:학술대회논문집
    • /
    • 한국데이타베이스학회 1999년도 춘계공동학술대회: 지식경영과 지식공학
    • /
    • pp.253-260
    • /
    • 1999
  • The recycling cell formation problem means that disposal products me classified into recycling part families using group technology in their end of life phase. Disposal products have the uncertainties of product status by usage influences during product use phase and recycling cells are formed design, process and usage attributes. In order to treat the uncertainties, fuzzy set theory and fuzzy logic-based neural network model are applied to recycling cell formation problem far disposal products. In this paper, a heuristic approach fuzzy ART neural network is suggested. The modified fuzzy ART neural network is shown that it has a great efficiency and give an extension for systematically generating alternative solutions in the recycling cell formation problem. We present the results of this approach applied to disposal refrigerators and the comparison of performances between other algorithms. This paper introduced a procedure which integrates economic and environmental factors into the disassembly of disposal products for recycling in recycling cells. A qualitative method of disassembly analysis is developed and its ai is to improve the efficiency of the disassembly and to generated an optimal disassembly which maximize profits and minimize environmental impact. Three criteria established to reduce the search space and facilitate recycling opportunities.

  • PDF

유전알고리즘을 이용하여 최적화된 방제 자원 배치안의 분포도 분석 (Distribution Analysis of Optimal Equipment Assignment Using a Genetic Algorithm)

  • 김혜진;김용혁
    • 한국융합학회논문지
    • /
    • 제11권4호
    • /
    • pp.11-16
    • /
    • 2020
  • 해양 오염사고를 대비한 계획으로, 최적화된 배치안들을 수집하여 분석하는 연구가 필수적이지만, 해양 오염사고 대응을 위한 최적을 배치안을 다양화하고 분석한 연구는 아직 선행되지 않았다. 이러한 필요성에 따라, 우리는 방제자원 배치 최적화를 위한 유전알고리즘을 고안하고 이를 통해 최적의 방제 자원 배치안을 10,000 개 도출하였다. k-평균 알고리즘으로 군집화한 결과, 예상 최대 유출지역인 여수, 대산, 울산에 대하여 두 개의 군집으로 확연히 구분되었다. 우리는 이러한 군집을 새몬 맵핑을 통해 이차원으로 사영하여 배치안의 분포도를 분석하였고, 군집에 포함되는 배치안들이 그렇지 않은 배치안보다 시뮬레이션의 결과가 우수함을 확인했다. 향후, 본 연구를 기반으로 성능이 우수한 근사모델을 구현하는 것이 가능할 것으로 보인다.

Development of a Knowledge Discovery System using Hierarchical Self-Organizing Map and Fuzzy Rule Generation

  • Koo, Taehoon;Rhee, Jongtae
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2001년도 The Pacific Aisan Confrence On Intelligent Systems 2001
    • /
    • pp.431-434
    • /
    • 2001
  • Knowledge discovery in databases(KDD) is the process for extracting valid, novel, potentially useful and understandable knowledge form real data. There are many academic and industrial activities with new technologies and application areas. Particularly, data mining is the core step in the KDD process, consisting of many algorithms to perform clustering, pattern recognition and rule induction functions. The main goal of these algorithms is prediction and description. Prediction means the assessment of unknown variables. Description is concerned with providing understandable results in a compatible format to human users. We introduce an efficient data mining algorithm considering predictive and descriptive capability. Reasonable pattern is derived from real world data by a revised neural network model and a proposed fuzzy rule extraction technique is applied to obtain understandable knowledge. The proposed neural network model is a hierarchical self-organizing system. The rule base is compatible to decision makers perception because the generated fuzzy rule set reflects the human information process. Results from real world application are analyzed to evaluate the system\`s performance.

  • PDF

HCBKA 기반 오차 보정형 TSK 퍼지 예측시스템 설계 (Design of HCBKA-Based TSK Fuzzy Prediction System with Error Compensation)

  • 방영근;이철희
    • 전기학회논문지
    • /
    • 제59권6호
    • /
    • pp.1159-1166
    • /
    • 2010
  • To improve prediction quality of a nonlinear prediction system, the system's capability for uncertainty of nonlinear data should be satisfactory. This paper presents a TSK fuzzy prediction system that can consider and deal with the uncertainty of nonlinear data sufficiently. In the design procedures of the proposed system, HCBKA(Hierarchical Correlationship-Based K-means clustering Algorithm) was used to generate the accurate fuzzy rule base that can control output according to input efficiently, and the first-order difference method was applied to reflect various characteristics of the nonlinear data. Also, multiple prediction systems were designed to analyze the prediction tendencies of each difference data generated by the difference method. In addition, to enhance the prediction quality of the proposed system, an error compensation method was proposed and it compensated the prediction error of the systems suitably. Finally, the prediction performance of the proposed system was verified by simulating two typical time series examples.

최적 TS 퍼지 모델 기반 다중 모델 예측 시스템의 구현과 시계열 예측 응용 (Multiple Model Prediction System Based on Optimal TS Fuzzy Model and Its Applications to Time Series Forecasting)

  • 방영근;이철희
    • 산업기술연구
    • /
    • 제28권B호
    • /
    • pp.101-109
    • /
    • 2008
  • In general, non-stationary or chaos time series forecasting is very difficult since there exists a drift and/or nonlinearities in them. To overcome this situation, we suggest a new prediction method based on multiple model TS fuzzy predictors combined with preprocessing of time series data, where, instead of time series data, the differences of them are applied to predictors as input. In preprocessing procedure, the candidates of optimal difference interval are determined by using con-elation analysis and corresponding difference data are generated. And then, for each of them, TS fuzzy predictor is constructed by using k-means clustering algorithm and least squares method. Finally, the best predictor which minimizes the performance index is selected and it works on hereafter for prediction. Computer simulation is performed to show the effectiveness and usefulness of our method.

  • PDF