• Title/Summary/Keyword: K-Means Clustering

Search Result 1,117, Processing Time 0.025 seconds

Automaticfor age-related pathological periventricular white matter changes (WMC) using k-means clustering and morphological features on T2-weighted and proton density (PD) MR images

  • 조익환;송인찬;오정수;장기현;정동석
    • 대한자기공명의과학회:학술대회논문집
    • /
    • 대한자기공명의과학회 2003년도 제8차 학술대회 초록집
    • /
    • pp.34-34
    • /
    • 2003
  • Age-related WMCs frequently appear in older subjects and are known to be associated with cognitive impairment and brain pathologies such as Alzheimer's disease and stroke. However, it is difficult to detect WMC correctly by using only intensity-based clustering scheme because the intensity levels of WC are similar to those of gray matter(GM). In this paper, we aimed to develop a fast and accurate scheme to detect and segment periventricular WMCs by using both k-means clustering method and morphological features.

  • PDF

리튬 이온 배터리의 자가 방전에 따른 내부 화학적 상태를 고려한 3-D K-means Clustering 스크리닝 기법 연구 (3-D K-means clustering method considering internal chemical state variation of self-dischareg of Li-ion battery)

  • 한동호;권상욱;김승우;임철우;김종훈
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2019년도 추계학술대회
    • /
    • pp.150-151
    • /
    • 2019
  • 리튬 이온 배터리가 전기 자동차 및 다양한 어플리케이션에 적용됨에 따라 폐배터리의 수요 또한 증가하고 있다. 내부 화학적 상태가 상이한 배터리의 전기적 특성실험을 통해 파라미터를 선정할 수 있으며 전기적 특성 실험 전 후의 시간차에 따른 파라미터 변화를 반영하는 것이 필수적이다. 제조 공정과정의 파라미터의 측정값과 특성실험 후의 파라미터 재측정값을 비교함으로써 이를 3-D Kmeans Clustering 알고리즘에 반영하여 더욱 정밀한 셀 선별을 실시하였다.

  • PDF

Fast Outlier Removal for Image Registration based on Modified K-means Clustering

  • Soh, Young-Sung;Qadir, Mudasar;Kim, In-Taek
    • 융합신호처리학회논문지
    • /
    • 제16권1호
    • /
    • pp.9-14
    • /
    • 2015
  • Outlier detection and removal is a crucial step needed for various image processing applications such as image registration. Random Sample Consensus (RANSAC) is known to be the best algorithm so far for the outlier detection and removal. However RANSAC requires a cosiderable computation time. To drastically reduce the computation time while preserving the comparable quality, a outlier detection and removal method based on modified K-means is proposed. The original K-means was conducted first for matching point pairs and then cluster merging and member exclusion step are performed in the modification step. We applied the methods to various images with highly repetitive patterns under several geometric distortions and obtained successful results. We compared the proposed method with RANSAC and showed that the proposed method runs 3~10 times faster than RANSAC.

K-means 클러스터링을 이용한 케이블 접속재 계면결함의 부분방전 분포 해석 (Partial Discharge Distribution Analysis on Interlace Defects of Cable Joint using K-means Clustering)

  • 조경순;홍진웅
    • 한국전기전자재료학회논문지
    • /
    • 제20권11호
    • /
    • pp.959-964
    • /
    • 2007
  • To investigate the influence of partial discharge(PD) distribution characteristics due to various defects on the power cable joints interface, we used the K-means clustering method. As the result of PD number(n) distribution analyzing on $\Phi-n$ graph, the phase angle($\Phi$) of cluster centroid shifted to $0^{\circ}\;and\;180^{\circ}$ increasing with applying voltage. It was confirmed that the PD quantify(q) and euclidean distance of centroid were increased with applying voltage from the centroid distribution analyzing of $\Phi-q$ plane. The dispersion degree was increased with calculated standard deviation of the $\Phi-q$ cluster centroid. The PD number and mean value on $\Phi-q$ graph were some different by electric field concentration with defect types.

Bootstrap Method for k-Spatial Medians

  • Jhun, Myoung-Shic
    • Journal of the Korean Statistical Society
    • /
    • 제15권1호
    • /
    • pp.1-8
    • /
    • 1986
  • The k-medians clustering method is considered to partition observations into k clusters. Consistency and advantage of bootstrap confidence sets of k optimal cluster centers are discussed. The k-medians and k-means clustering methods are compared by using actual data sets.

  • PDF

퍼지 클러스터링기반 신경회로망 패턴 분류기의 학습 방법 비교 분석 (Comparative Analysis of Learning Methods of Fuzzy Clustering-based Neural Network Pattern Classifier)

  • 김은후;오성권;김현기
    • 전기학회논문지
    • /
    • 제65권9호
    • /
    • pp.1541-1550
    • /
    • 2016
  • In this paper, we introduce a novel learning methodology of fuzzy clustering-based neural network pattern classifier. Fuzzy clustering-based neural network pattern classifier depicts the patterns of given classes using fuzzy rules and categorizes the patterns on unseen data through fuzzy rules. Least squares estimator(LSE) or weighted least squares estimator(WLSE) is typically used in order to estimate the coefficients of polynomial function, but this study proposes a novel coefficient estimate method which includes advantages of the existing methods. The premise part of fuzzy rule depicts input space as "If" clause of fuzzy rule through fuzzy c-means(FCM) clustering, while the consequent part of fuzzy rule denotes output space through polynomial function such as linear, quadratic and their coefficients are estimated by the proposed local least squares estimator(LLSE)-based learning. In order to evaluate the performance of the proposed pattern classifier, the variety of machine learning data sets are exploited in experiments and through the comparative analysis of performance, it provides that the proposed LLSE-based learning method is preferable when compared with the other learning methods conventionally used in previous literature.

밀도에 무관한 클러스터링 기법의 개선 (Improvement on Density-Independent Clustering Method)

  • 김성훈;허경용
    • 한국정보통신학회논문지
    • /
    • 제21권5호
    • /
    • pp.967-973
    • /
    • 2017
  • 클러스터링은 균일한 특성을 가지는 데이터를 클러스터로 묶기 위해 사용되는 비교사 학습 방법 중 하나로 다양한 응용에 사용되고 있으며 FCM(Fuzzy C-Means)이 대표적인 방법 중 하나이다. 하지만 FCM에서 주로 사용되는 유클리드 거리 척도는 밀도가 높은 클러스터가 클러스터링 결과에 많은 영향을 미쳐 밀도가 높은 쪽으로 클러스터의 중심을 위치시키는 문제가 있으며, 이를 해결하기 위한 방법 중 하나가 클러스터 중심 사이의 거리가 가능한 멀어지도록 하는 밀도 무관 클러스터링이다. 하지만 밀도 무관 클러스터링 역시 클러스터 중심 사이의 거리를 정확히 제어하기가 어렵다. 이 논문에서는 클러스터 중심 사이의 거리가 멀어지도록 할뿐만이 아니라 클러스터 중심이 밀도가 높은 곳에 위치하도록 하는 항을 추가한 개선된 밀도 무관 클러스터링 방법을 제안한다. 제안하는 방법은 FCM이나 밀도 무관 클러스터링에 비해 실제 클러스터 중심으로 수렴하는 경우가 더 많다는 것을 실험 결과를 통해 확인할 수 있다.

A Hybrid Genetic Algorithm for K-Means Clustering

  • Jun, Sung-Hae;Han, Jin-Woo;Park, Minjae;Oh, Kyung-Whan
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 ISIS 2003
    • /
    • pp.330-333
    • /
    • 2003
  • Initial cluster size for clustering of partitioning methods is very important to the clustering result. In K-means algorithm, the result of cluster analysis becomes different with optimal cluster size K. Usually, the initial cluster size is determined by prior and subjective information. Sometimes this may not be optimal. Now, more objective method is needed to solve this problem. In our research, we propose a hybrid genetic algorithm, a tree induction based evolution algorithm, for determination of optimal cluster size. Initial population of this algorithm is determined by the number of terminal nodes of tree induction. From the initial population based on decision tree, our optimal cluster size is generated. The fitness function of ours is defined an inverse of dissimilarity measure. And the bagging approach is used for saying computational time cost.

  • PDF

Edge Computing 환경에서의 PCA를 이용한 Dimensionality 감축 기법 (Dimensionality Reduction Using PCA for Edge Computing)

  • 임환희;김세준;김경태;윤희용
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2018년도 제57차 동계학술대회논문집 26권1호
    • /
    • pp.95-96
    • /
    • 2018
  • Edge Computing은 Cloud Computing의 단점을 보완하기 위해 등장 하였으나, 자원 제한을 가지고 있는 Edge Node에서 데이터 분석 및 처리해야 하는 문제점이 있다. 이를 해결하기 위해 K-means clustering 알고리즘과 PCA 기법을 이용해 차원 추축을 이용한 계산비용과 처리시간을 줄이는 기법을 제안하였다. PCA란, 차원 축소 및 데이터 압축에 사용되는 기계학습 알고리즘 중 하나이며, 데이터에서 중요한 정보만 추출해 차원을 줄일 수 있다. 이를 통해 제안한 기법이 기존의 Reduction first clustering second(RFCS) 기법에 비해 성능이 우수한 것을 확인할 수 있었다.

  • PDF

X-means 클러스터링을 이용한 악성 트래픽 탐지 방법 (A Malicious Traffic Detection Method Using X-means Clustering)

  • 한명지;임지혁;최준용;김현준;서정주;유철;김성렬;박근수
    • 정보과학회 논문지
    • /
    • 제41권9호
    • /
    • pp.617-624
    • /
    • 2014
  • 악성 트래픽은 디도스 공격, 봇넷 통신 등의 인터넷 망을 교란시키거나 특정 네트워크, 서버, 혹은 호스트에 피해를 끼칠 의도를 가지고 발생시키는 트래픽을 지칭한다. 이와 같은 악성 트래픽은 인터넷이 발생한 이래 꾸준히 양과 질에서 진화하고 있고 이에 대한 대응 연구도 계속되고 있다. 이 논문에서는 악성 트래픽을 기존 X-means 클러스터링 알고리즘을 적용하여 효과적으로 탐지하는 방법을 제시하였다. 특히 악성 트래픽의 통계적 특징을 분석하고 클러스터링을 위한 메트릭을 정의하는 방법을 체계적으로 제시하였다. 또한 두 개의 공개된 트래픽 데이터에 대한 실험을 통해 실효성을 검증하였다.