• 제목/요약/키워드: K-GIC

검색결과 77건 처리시간 0.022초

Repaired glass ionomer cement의 결합강도에 관한 연구 (A STUDY ON THE BOND STRENGTH OF REPAIRED GLASS IONOMER CEMENTS)

  • 서수정;김신
    • 대한소아치과학회지
    • /
    • 제23권2호
    • /
    • pp.347-355
    • /
    • 1996
  • The purpose of this study was to compare the bond strengths of different kinds of glass ionomer cements (GIC), which is recently increasing the clinical application in the field of pediatric dentistry and measure the repaired bond strengths in order to examine the clinical applicabilty of partial repaired cases. By using one kind of the light cured type GIC and three kinds of the chemical cured type GIC, the bond strengths of the followings were compared : unrepaired group as control, repaired conditioning group, which was treated the repaired surface using 25% polyacrylic acid and repaired non-conditioning group without surface treatment. Three point bending test was performed under Universal Testing Machine in order to measure the compressive bond strengths. The results were as follows : 1. Light cured GIC had higher bond strength than chemical cured type GIC in both of repaired and unrepaired groups. 2. In repaired cases, all of the materials decreased the bond strength when compared to the control group. In the light cured type, the bond strength of repaired conditioning group decreased 31.6%, repaired non-conditioning group decreased 40.8%. In chemical cured types, the bond strength of repaired conditining group decreased 11.8%, repaired non-conditioning group decreased 20.9%. 3. All the materials, in the case of the chemical treatment on the repaired surface using 25% polyacrylic acid had higher bond strength than untreated but, lower than control group.

  • PDF

그라파이트 인터칼레이션 컴파운드가 에폭시 복합재료의 흡·차음성에 미치는 영향 (Effect of Graphite Intercalation Compound on the Sound Absorption Coefficient and Sound Transmission Loss of Epoxy Composites)

  • 이병찬;박규대;최성규;김성룡
    • Composites Research
    • /
    • 제28권6호
    • /
    • pp.389-394
    • /
    • 2015
  • 팽창된 그라파이트 인터칼레이션 컴파운드에 에폭시 수지를 주입하여 제조한 복합재료의 흡 차음성을 연구하였다. 관내법을 이용하여 복합재료의 흡음률과 음향투과손실을 측정하였다. 주사전자현미경을 이용하여 에폭시 매트릭스 내부에 그라파이트 인터칼레이션 컴파운드가 무질서한 방향으로 균일하게 분산된 것을 확인하였다. 그라파이트 인터칼레이션 컴파운드 함량이 증가함에 따라 복합재료의 면밀도가 감소하였으며, epoxy/(GIC 20 wt%) 복합재료의 면밀도는 순수 에폭시에 비하여 56% 감소하였다. 500~1000 Hz 주파수 영역에서 복합재료의 흡음률은 순수 에폭시에 비해 3배 정도 증가하였다. 그라파이트 인터칼레이션 컴파운드의 함량이 증가함에 따라 복합재료에 포함된 기공의 비율이 증가하여 순수 에폭시에 비하여 복합재료의 음향투과손실이 감소하는 것으로 판단된다.

리튬 이온 전지 탄소부극용 Sn-GIC의 합성과 그 전기화학적 특성 (Synthesis of Sn-GIC for Carbon Electrode of Lithium Ion Battery and Its Electrochemical Characteristics)

  • 엄의흠;이택영;이철태
    • 공업화학
    • /
    • 제18권5호
    • /
    • pp.449-453
    • /
    • 2007
  • 리튬이온이차전지에 사용되는 탄소부극의 성능 향상을 위하여 새로운 탄소부극물질로서 Sn-GIC (Graphite intercalated compound)를 합성하고 그 전기화학적 특성을 조사하였다. 합성시 $SnCl_2$ 수용액의 농도가 증가할수록, 그리고 수용액에 함침한 후 건조한 시료의 열처리 온도가 증가할수록 흑연에 삽입되는 Sn의 함량이 증가하였으며, 또한 흑연 내부로 삽입된 Sn의 함량이 증가함에 따라 이를 부극활물질로 사용한 cell의 초기 방전용량은 증가하였다. 가장 우수한 특성을 나타내는 1.0M $SnCl_2$ 수용액에 함침한 후 $900^{\circ}C$에서 열처리하여 제조한 Sn-GIC는 346 mA/g의 초기용량과 10 cycle 후 13%의 용량감소를 나타내었다.

Comparative study on the morphological properties of graphene nanoplatelets prepared by an oxidative and non-oxidative route

  • An, Jung-Chul;Lee, Eun Jung;Yoon, So-Young;Lee, Seong-Young;Kim, Yong-Jung
    • Carbon letters
    • /
    • 제26권
    • /
    • pp.81-87
    • /
    • 2018
  • Morphological differences in multi-layered graphene flakes or graphene nanoplatelets prepared by oxidative (rGO-NP, reduced graphene oxide-nanoplatelets) and non-oxidative (GIC-NP, graphite intercalation compound-nanoplatelets) routes were investigated with various analytical methods. Both types of NPs have similar specific surface areas but very different structural differences. Therefore, this study proposes an effective and simple method to identify structural differences in graphene-like allotropes. The adsorptive potential peaks of rGO-NP attained by the density functional theory method were found to be more scattered over the basal and non-basal regions than those of GIC-NP. Raman spectra and high resolution TEM images showed more distinctive crystallographic defects in the rGO-NP than in the GIC-NP. Because the R-ratio values of the edge and basal plane of the sample were maintained and relatively similar in the rGO-NP (0.944 for edge & 1.026 for basal), the discrepancy between those values in the GIC-NP were found to be much greater (0.918 for edge & 0.164 for basal). The electrical conductivity results showed a remarkable gap between the rGO-NP and GIC-NP attributed to their inherent morphological and crystallographic properties.

저/고분자량 키토산에 의한 종래형 치과용 글라스아이오노머 시멘트의 강화 (Strengthening of conventional dental glass ionomer cement by addition of chitosan powders with low or high molecular weight)

  • 김동애;김규리;전수경;이정환;이해형
    • 대한치과재료학회지
    • /
    • 제44권1호
    • /
    • pp.69-77
    • /
    • 2017
  • The aim of this study was to investigate the effects of chitosan powder addition on the strengthening of conventional glass ionomer cement. Two types of chitosan powders with different molecular weight were mixed with conventional glass ionomer cement (GIC): low-molecular weight chitosan (CL; 50~190 kDa), high-molecular weight chitosan (CH; 310~375 kDa). The chitosan powders (CL and CH) were separately added into the GIC liquid (0.25-0.5 wt%) under magnetic stirring, or mixed with the GIC powder by ball-milling for 24 h using zirconia balls. The mixing ratio of prepared cement was 2:1 for powder to liquid. Net setting time of cements was measured by ISO 9917-1. The specimens for the compressive strength (CS; $4{\times}6mm$), diametral tensile strength (DTS; $6{\times}4mm$), three-point flexure (FS; $2{\times}2{\times}25mm$) with flexure modulus (FM) were obtained from cements at 1, 7, and 14 days after storing in distilled water at $(37{\pm}1)^{\circ}C$. All mechanical strength tests were conducted with a cross-head speed of 1 mm/min. Data were statistically analyzed by one-way ANOVA and Tukey HSD post-hoc test. The mechanical properties of conventional glass ionomer cement was significantly enhanced by addition of 0.5 wt% CL to cement liquid (CS, DTS), or by addition of 10 wt% CH (FS) to cement powder. The CL particles incorporated into the set cement were firmly bonded to the GIC matrix (SEM). Within the limitation of this study, the results indicated that chitosan powders can be successfully added to enhance the mechanical properties of conventional GIC.

Current aspects and prospects of glass ionomer cements for clinical dentistry

  • Park, Eun Young;Kang, Sohee
    • Journal of Yeungnam Medical Science
    • /
    • 제37권3호
    • /
    • pp.169-178
    • /
    • 2020
  • Glass ionomer cement (GIC) is a tailor-made material that is used as a filling material in dentistry. GIC is cured by an acid-base reaction consisting of a glass filler and ionic polymers. When the glass filler and ionic polymers are mixed, ionic bonds of the material itself are formed. In addition, the extra polymer anion reacts with calcium in enamel or dentin to increase adhesion to the tooth tissue. GICs are widely used as adhesives for artificial crowns or orthodontic brackets, and are also used as tooth repair material, cavity liner, and filling materials. In this review, the current status of GIC research and development and its prospects for the future have been discussed in detail.

다중벽 탄소나노튜브를 첨가한 글라스아이오노머시멘트의 항균효과 및 기계적 특성 (Investigation of the antibacterial and mechanical properties of glassionomer cement containing multiwall carbon nanotube(MWCNT))

  • 정미애;김동애
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2017년도 춘계 종합학술대회 논문집
    • /
    • pp.485-486
    • /
    • 2017
  • 치과용 글라스아이오노머(GIC)는 치과에서 폭넓게 응용되고 있는 재료 중 하나이다. 그러나 GIC의 낮은 기계적 특성으로 인해 구강내 사용범위가 제한적이다. 이에 본 연구는 기능성 다중벽 탄소나노튜브(multi wall carbon nanotube; MWCNT-COOH)를 각 농도별(0.25-1.0 wt%)로 기존의 분말에 첨가하여 복합체를 제조한 후 제조사의 지시에 따란 분말(2):액(1)의 비율로 시편을 제작하여 다중벽탄소나노튜브가 GIC의 기계적 특성과 항균효과에 미치는 영향을 조사하였다.

  • PDF

치근 천공 치료 재료의 생체친화성의 비교 (COMPARISON OF BIOCOMPATIBILITY OF FOUR ROOT PERFORATION REPAIR MATERIALS)

  • 강민경;배인호;고정태;황윤찬;황인남;오원만
    • Restorative Dentistry and Endodontics
    • /
    • 제34권3호
    • /
    • pp.192-198
    • /
    • 2009
  • 이번 연구는 치근 천공의 치료 재료인 white mineral trioxide aggregate (MTA)를 흔히 사용되는 calcium hydroxide liner ($Dycal^{(R)}$), glass ionomer cement (GIC), 그리고 MTA와 유사한 성분을 가진 Portland cement와 세포독성 실험으로 생체 친화성을 평가하는 것이다. 세포독성의 정도는 MG-63 세포를 이용해 주사전자 현미경적 관찰과 수용성 tetrazolium salt를 이용한 흡광도를 측정 (XTT assay)하여 평가하였다. SEM 관찰에서, 1일과 3일째 모두에서 GIC와 MTA, Portland cement 표면에서는 잘 부착된 세포를 보여주었다. 반면에, Dycal 표면의 세포들은 둥글고 부착되지 않은 양상을 보여 주었다. XTT assay에서는 Dycal을 제외한 모든 재료에서 유사하게 높은 세포 활성도를 보여주었으며, 이는 SEM 관찰 소견과 일치하였다. 이번 연구는 MTA가 생체친화적인 재료라는 견해를 뒷받침한다. 또한 Portland cement와 GIC에서도 MTA와 유사한 세포반응을 보여주었다.

Cloning, Nucleotide Sequencing, and Characterization of the ptsG Gene Encoding Glucose-Specific Enzyme II of the Phosphotransferase System from Brevibacterium lactofermentum

  • Yoon, Ki-Hong;Lee, Kyu-Nam;Lee, Jung-Kee;Park, Se-Cheol
    • Journal of Microbiology and Biotechnology
    • /
    • 제9권5호
    • /
    • pp.582-588
    • /
    • 1999
  • A Brevibacterium lactofermentum gene coding for a glucose-specific permease of the phosphoenolpyruvate-dependent phosphotransferase system (PTS) was cloned, by complementing an Escherichia coli mutation affecting a ptsG gene with the B. lactofermentum genomic library, and completely sequenced. The gene was identified as a ptsG, which enables an E. coli transformant to transport non-metabolizable glucose analogue 2-deoxyglucose (2DG). The ptsG gene of B. lactofermentum consists of an open reading frame of 2,025 nucleotides encoding a polypeptide of 674 amino acid residues and a TAA stop codon. The 3' flanking region contains two stem-loop structures which may be involved in transcriptional termination. The deduced amino acid sequence of the B. lactofermentum enzyme $II^{GIe}$ specific to glucose ($EII^{GIe}$) has a high homology with the Corynebacterium glutamicum enzyme $II^{Man}$ specific to glucose and mannose ($EII^{Man}$), and the Brevibacterium ammoniagenes enzyme $II^{GIc}$ specific to glucose ($EII^{GIc}$). The 171-amino-acid C-terminal sequence of the $EII^{Glc}$ is also similar to the Escherichia coli enzyme $IIA^{GIc}$ specific to glucose ($IIA^{GIc}$). It is interesting that the arrangement of the structural domains, IIBCA, of the B. lactofermentum $EII^{GIc}$ protein is identical to that of EIIs specific to sucrose or $\beta$-glucoside. Several in vivo complementation studies indicated that the B. lactofermentum $EII^{Glc}$ protein could replace both $EII^{ Glc}$ and $EIIA^{Glc}$ in an E. coli ptsG mutant or crr mutant, respectively.

  • PDF

압전 횡효과를 이용한 무지향성 주파수가변 초음파트랜스듀서 (Frequency Controllable Wide-Beam Ultrasonic Transducer with Transverse Mode)

  • 김정순;김무준;하강렬;강갑중
    • 센서학회지
    • /
    • 제13권6호
    • /
    • pp.417-423
    • /
    • 2004
  • In order to obtain wide-beam characteristics and variable resonant frequency of a ultrasonic transducer for the array source, an electrode of transverse mode piezoelectric vibrator is divided, and an electronic inductance is connected to the divided electrodes. The electronic inductance is made by GIC (General Impedance Converter) circuit. Because the GIC circuit is made of OP-Amps and other passive elements, the value of the inductance can be selected easily. As the results, the electronic inductance is variable in the range from 0.2 mH to 1.2 mH. Using the inductance, the resonance frequency of the transducer can be changed in the range from 73 kHz to 86 kHz. In the directivity of the transducer, it is confirmed that the beam width of the transducer is wider than $80^{\circ}$ at -3 dB in water.