• Title/Summary/Keyword: K-Box

Search Result 3,217, Processing Time 0.046 seconds

Short- and long-term analyses of shear lag in RC box girders considering axial equilibrium

  • Xiang, Yiqiang;He, Xiaoyang
    • Structural Engineering and Mechanics
    • /
    • v.62 no.6
    • /
    • pp.725-737
    • /
    • 2017
  • An analytical method considering axial equilibrium is proposed for the short- and long-term analyses of shear lag effect in reinforced concrete (RC) box girders. The axial equilibrium of box girders is taken into account by using an additional generalized displacement, referred to as the longitudinal displacement of the web. Three independent shear lag functions are introduced to describe different shear lag intensities of the top, bottom, and cantilever plates. The time-dependent material properties of the concrete are simulated by the age-adjusted effective modulus method (AEMM), while the reinforcement is assumed to behave in a linear-elastic fashion. The differential equations are derived based on the longitudinal displacement of the web, the vertical displacement of the cross section, and the shear lag functions of the flanges. The time-dependent expressions of the generalized displacements are then deduced for box girders subjected to uniformly distributed loads. The accuracy of the proposed method is validated against the finite element results regarding the short- and long-term responses of a simply-supported RC box girder. Furthermore, creep analyses considering and neglecting shrinkage are performed to quantify the time effects on the long-term behavior of a continuous RC box girder. The results show that the proposed method can well evaluate both the short- and long-term behavior of box girders, and that concrete shrinkage has a considerable impact on the concrete stresses and internal forces, while concrete creep can remarkably affect the long-term deflections.

A Study of the Improvement of Thermal Performance of a Junction Box of a Passenger Car (자동차 정션박스의 열성능 개선을 위한 연구)

  • Lee, Young-Lim
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.2
    • /
    • pp.136-142
    • /
    • 2008
  • Thermal management of a junction box of a passenger car has recently become more challenging due to its smaller size and larger current capacity. Thus, it is essential to perform the thermal optimization of a junction box in its design on an early stage of vehicle design. In this study, 3 dimensional CFD simulation with experimental measurement has been done to study for better thermal management of the junction box. First, the study of thermal characteristics of electric relays in the junction box has revealed that each surface of the relay has very different thermal resistance. In addition, an idea to install a cooling fan on the junction box has been studied and it was found that the forced cooling method was not effective on the system to keep the thermal resistance to the reasonable level of the junction box. Finally, the effect of external flows around the junction box on the temperatures of the relays, fuses, etc. has been studied and the result shows that the installation of the junction box at the proper place in an engine room can avoid any unnecessary overdesign in thermal management.

Development of High-insulation Packaging using Recycled PET and Comparison of Insulation Performance with Existing Styrofoam and Paper Boxes (재생페트를 이용한 고단열 패키징 개발과 기존의 스티로폼 및 종이 박스와의 단열성능 비교)

  • Ryu, Jae Ryong;Yook, Se Won;Kal, Seung Hoon;Shin, YangJae
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.25 no.3
    • /
    • pp.111-116
    • /
    • 2019
  • Thermal insulation performance of new insulation packaging made of recycled PET nonwoven (thickness : 10 mm) was verified by conducting comparative experiment with an EPS box (thickness : 25 mm) and a double wall corrugated box (thickness : 7 mm). Three ice packs (300 g) were positioned 200 mm above the bottom inside each box, all of which are placed side by side and temperature change of 2 points (5mm under middle icepack and 130 mm under middle icepack) was recorded by data logger (GL-840, Graphtec) for 16 hours under the environment of 29℃. The new packaging box showed 75% higher insulation performance than the EPS box and 180% higher than the corrugated box. In order to figure out the reason for insulation performance difference among boxes, thermal conductivities of each box material were measured using heat flow meter (HFM436 lamda, Netzsch). U-value (thermal conductivity divided by thickness) of EPS was lower than recycled pet nonwoven by 57%, which seemed to be opposite to the result of insulation test of boxes. This was explained by high water vapor transmission rate of EPS (6 times higher than PET insulation) and air pocket effect of PET insulation.

Theoretical analysis of Y-shape bridge and application

  • Lu, Peng-Zhen;Zhang, Jun-Ping;Zhao, Ren-Da;Huang, Hai-Yun
    • Structural Engineering and Mechanics
    • /
    • v.31 no.2
    • /
    • pp.137-152
    • /
    • 2009
  • Mechanic behavior of Y-shape thin-walled box girder bridge structure is complex, so one can not exactly hold the mechanical behavior of the Y-shape thin-walled box girder bridge structure through general calculation theory and analytical method. To hold the mechanical behavior better, based on elementary beam theory, by increasing the degree of freedom analytical method, taking account of restrained torsiondistortion angledistortion warp and shearing lag effect at the same time, authors obtain a thin-walled box beam analytical element of 10 degrees of freedom of every node, derive stiffness matrix of the element, and code a finite element procedure. In addition, authors combine the obtained procedure with spatial grillage analytical method, meanwhile, they build a new analytical method that is the spatial thin-walled box girder element grillage analysis method. In order to validate the precision of the obtained analysis method, authors analyze a type Y-shape thin-walled box girder bridge structure according to the elementary beam theory analytical method, the shell theory analytical method and the spatial thin-walled box girder element grillage analysis method respectively. At last, authors test a type Y-shape thin-walled box girder bridge structure. Comparisons of the results of theory analysis with the experimental text show that the spatial thin-walled box girder element grillage analysis method is simple and exact. The research results are helpful for the knowledge of the mechanics property of these Y-shape thin-walled box girder bridge structures.

Non-linear analyses model for composite box-girders with corrugated steel webs under torsion

  • Ko, Hee-Jung;Moon, Jiho;Shin, Yong-Woo;Lee, Hak-Eun
    • Steel and Composite Structures
    • /
    • v.14 no.5
    • /
    • pp.409-429
    • /
    • 2013
  • A composite box-girder with corrugated steel webs has been used in civil engineering practice as an alternative to the conventional pre-stressed concrete box-girder because of several advantages, such as high shear resistance without vertical stiffeners and an increase in the efficiency of pre-stressing due to the accordion effect. Many studies have been conducted on the shear buckling and flexural behavior of the composite box-girder with corrugated steel webs. However, the torsional behavior is not fully understood yet, and it needed to be investigated. Prior study of the torsion of the composite box-girder with corrugated steel webs has been developed by assuming that the concrete section is cracked prior to loading and doesn't have tensile resistance. This results in poor estimation of pre-cracking behaviors, such as initial stiffness. To overcome this disadvantage of the previous analytical model, an improved analytical model for torsion of the composite box-girder with corrugated steel webs was developed considering the concrete tension behavior in this study. Based on the proposed analytical model, a non-linear torsional analysis program for torsion of the composite box-girder with corrugated steel webs was developed and successfully verified by comparing with the results of the test. The proposed analytical model shows that the concrete tension behavior has significant effect on the initial torsional stiffness and cracking torsional moment. Finally, a simplified torsional moment-twist angle relationship of the composite box-girder with corrugated steel webs was proposed based on the proposed analytical model.

Development of a coupled tendom driven robot hand

  • Choi, H.R.;Lee, Y.T.;Kim, J.H.;Chung, W.K.;Youm, Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.185-190
    • /
    • 1993
  • The POSTECH Hand adopting coupled tendon driven technique with planar two fingers is developed. The hand is designed to emulate principal motions of the human hand which has two and three joints respectively. Its kinematic parameters are determined through a parameter optimizing technique to aim at improving the isotropy of fingertip motions with new criterion functions of design. For the control of the hand, tension and torque control algorithms are developed. Based on the virtual stiffness concept, we develop the stiffness control method of a grasped object with redundant finger mechnism and investigate experimentally.

  • PDF

Control of tendon driven one-link manipulator

  • Choi, H.R.;Lee, Y.T.;Kim, J.H.;Chung, W.K.;Youm, Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.290-295
    • /
    • 1992
  • Tendon driven method to drive one joint using two actuators is developed and implemented. While the method has advantages over conventional transmissions, it also has several drawbacks like tendon slack, elongation and endurability. In this paper, a compensation method of the intrinsic non-linearities of tendon is proposed to improve the performance of antagonistic tendon driven method. In this method, tendon tension measurement is prerequisite which is measured with strain gauge type tension sensor. The developed method is implemented on one link test bed with colocated and non-colocated position sensor.

  • PDF

Adaptive control strategy in electromagnetic levitation system

  • Kim, Seok-Joo;Kim, Jong-Moon;Kweon, Soon-Man;Kim, Kook-Hun;Kim, Yong-Joo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1337-1342
    • /
    • 1990
  • This paper deals with control system design strategy for electrolmaginetic suspension (E.M.S.) system. For a successful control of E.M.S. system, the nature of E.M.S. system is deeply studied in the view point of non-linear, open-loop unstable, time-varying, non-minimum phase system. To find a special control treatment for E.M.S. system, analyses and simulations for various models are carried out. As one of the successful candidates, adaptive control concept is introduced and sample hardware system using digital signal processor is implemented.

  • PDF

Effect of residual stress and geometric imperfection on the strength of steel box girders

  • Jo, Eun-Ji;Vu, Quang-Viet;Kim, Seung-Eock
    • Steel and Composite Structures
    • /
    • v.34 no.3
    • /
    • pp.423-440
    • /
    • 2020
  • In the recent years, steel box girder bridges have been extensively used due to high bending stiffness, torsional rigidity, and rapid construction. Therefore, researches related to this girder bridge have been widely conducted. This paper investigates the effect of residual stresses and geometric imperfections on the load-carrying capacity of steel box girder bridges spanning 30 m and 50 m. A three - dimensional finite element model of the steel box girder with a closed section was developed and analyzed using ABAQUS software. Nonlinear inelastic analysis was used to capture the actual response of the girder bridge accurately. Based on the results of analyses, the superimposed mode of webs and flanges was recommended for considering the influence of initial geometric imperfections of the steel box model. In addition, 4% and 16% strength reduction rates on the load - carrying capacity of the perfect structural system were respectively recommended for the girders with compact and non-compact sections, whose designs satisfy the requirements specified in AASHTO LRFD standard. As a consequence, the research results would help designers eliminate the complexity in modeling residual stresses and geometric imperfections when designing the steel box girder bridge.