• Title/Summary/Keyword: K-Box

Search Result 3,217, Processing Time 0.04 seconds

Prediction of ultimate moment anchorage capacity of concrete filled steel box footing

  • Bashir, Muhammad Aun;Furuuchi, Hitoshi;Ueda, Tamon;Bashir, M. Nauman
    • Steel and Composite Structures
    • /
    • v.15 no.6
    • /
    • pp.645-658
    • /
    • 2013
  • The objective of the study is to predict the moment anchorage capacity of the concrete filled steel box (CFSB) as footing by using the 3D finite element program CAMUI developed by authors' laboratory. The steel box is filled with concrete and concrete filled steel tube (CFT) column is inserted in the box. Numerical simulation of the experimental specimens was carried out after introducing the new constitutive model for post peak behavior of concrete in compression under confinement. The experimental program was conducted to verify the reliability of the simulation results by the FE program. The simulated peak loads agree reasonably with the experimental ones and was controlled by concrete crushing near the column. After confirming the reliability of the FEM simulation, effects of different parameters on the moment anchorage capacity of concrete filled steel box footing were clarified by conducting numerically parametric study.

Development of Black Box for EV Charging Infra based on Solar Power Generation and ESS (태양광발전 및 ESS 기반 전기차 충전인프라용 블랙박스 개발)

  • Kim, Dong-Wan;Park, Ji-Ho;An, Young-Joo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.67 no.3
    • /
    • pp.160-167
    • /
    • 2018
  • In this paper, a black box, which is provided the reliability and user safety of home battery energy storage system connected with solar energy generation, is developed. In the developed scheme, a status and diagnosis data of battery management system, power conditioning system, solar energy generation and grid is measured. This status and diagnosis data is stored and displayed in the developed black box. In addition, this status and diagnosis data is stored and displayed in a monitoring system and a smart phone of user. A performance evaluation of the developed black box is carried out using emulator of home battery energy storage system connected with solar energy generation. Consequently, the developed black box is proved its superiority of the reliability and user safety.

Anti-seismic Capacity Improvement of Underground Box Structures Strengthened with Pressure Bracing (가압식 브레이싱 보강에 의한 지중박스구조물의 내진성능향상 방법)

  • Chung, Jee-Seung;Moon, In-Gi;Min, Dae-Hong
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.4
    • /
    • pp.97-102
    • /
    • 2013
  • This paper presents a new strengthening method of underground box structures against seismic loads for anti-seismic capacity improvement. A threaded steel member with pressure devices(so called 'I-bracing pressure system') is used to improve seismic capacity of the RC box structure. The I-bracing pressure system is fixed the corner of opening after chemical anchor was installed by drilling hole on the box structure. The structural performance was evaluated analytically. Two bracing types of strengthening methods were used; conventional bracing method and improved I-bracing pressure system. For the performance evaluation, seismic analyses were performed on moment and shear resisting structures with and without I-bracing pressure system. Numerical results confirmed that the proposed I-bracing pressure system can enhance the seismic capacity of the underground RC box structures.

Development of Black Box for Home Battery Energy Storage System Connected with Solar Energy Generation (태양광발전 연계 가정용 배터리 에너지저장장치의 블랙박스 개발)

  • Kim, Sang-Dong;Park, Ji-Ho;Kim, Dong-Wan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.7
    • /
    • pp.1295-1302
    • /
    • 2016
  • In this paper, a black box, which is provided the reliability and user safety of home battery energy storage system connected with solar energy generation, is developed. In the developed scheme, a status and diagnosis data of battery management system, power conditioning system, solar energy generation and grid is measured. This status and diagnosis data is stored and displayed in the developed black box. In addition, this status and diagnosis data is stored and displayed in a monitoring system and a smart phone of user. A performance evaluation of the developed black box is carried out using emulator of home battery energy storage system connected with solar energy generation. Consequently, the developed black box is proved its superiority of the reliability and user safety.

Nonlinear Shell Finite Element and Parallel Computing Algorithm for Aircraft Wing-box Structural Analysis (항공기 Wing-box 구조해석을 위한 비선형 쉘 유한요소 및 병렬계산 기법 개발)

  • Kim, Hyejin;Kim, Seonghwan;Hong, Jiwoo;Cho, Haeseong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.8
    • /
    • pp.565-571
    • /
    • 2020
  • In this paper, precision and efficient nonlinear structural analysis for the aircraft wing-box model is developed. Herein, nonlinear shell element based on the co-rotational (CR) formulation is implemented. Then, parallel computing algorithm, the element-based partitioning technique is developed to accelerate the computational efficiency of the nonlinear structural analysis. Finally, computational performance, i.e., accuracy and efficiency, of the proposed analysis is evaluated by comparing with that of the existing commercial software.

Genome-wide survey and expression analysis of F-box genes in wheat

  • Kim, Dae Yeon;Hong, Min Jeong;Seo, Yong Weon
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.141-141
    • /
    • 2017
  • The ubiquitin-proteasome pathway is the major regulatory mechanism in a number of cellular processes for selective degradation of proteins and involves three steps: (1) ATP dependent activation of ubiquitin by E1 enzyme, (2) transfer of activated ubiquitin to E2 and (3) transfer of ubiquitin to the protein to be degraded by E3 complex. F-box proteins are subunit of SCF complex and involved in specificity for a target substrate to be degraded. F-box proteins regulate many important biological processes such as embryogenesis, floral development, plant growth and development, biotic and abiotic stress, hormonal responses and senescence. However, little is known about the F-box genes in wheat. The draft genome sequence of wheat (IWGSC Reference Sequence v1.0 assembly) used to analysis a genome-wide survey of the F-box gene family in wheat. The Hidden Markov Model (HMM) profiles of F-box (PF00646), F-box-like (PF12937), F-box-like 2 (PF13013), FBA (PF04300), FBA_1 (PF07734), FBA_2 (PF07735), FBA_3 (PF08268) and FBD (PF08387) domains were downloaded from Pfam database were searched against IWGSC Reference Sequence v1.0 assembly. RNA-seq paired-end libraries from different stages of wheat, such as stages of seedling, tillering, booting, day after flowering (DAF) 1, DAF 10, DAF 20, and DAF 30 were conducted and sequenced by Illumina HiSeq2000 for expression analysis of F-box protein genes. Basic analysis including Hisat, HTseq, DEseq, gene ontology analysis and KEGG mapping were conducted for differentially expressed gene analysis and their annotation mappings of DEGs from various stages. About 950 F-box domain proteins identified by Pfam were mapped to wheat reference genome sequence by blastX (e-value < 0.05). Among them, more than 140 putative F-box protein genes were selected by fold changes cut-offs of > 2, significance p-value < 0.01, and FDR<0.01. Expression profiling of selected F-box protein genes were shown by heatmap analysis, and average linkage and squared Euclidean distance of putative 144 F-box protein genes by expression patterns were calculated for clustering analysis. This work may provide valuable and basic information for further investigation of protein degradation mechanism by ubiquitin proteasome system using F-box proteins during wheat development stages.

  • PDF

White-Box AES Implementation Revisited

  • Baek, Chung Hun;Cheon, Jung Hee;Hong, Hyunsook
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.273-287
    • /
    • 2016
  • White-box cryptography presented by Chow et al. is an obfuscation technique for protecting secret keys in software implementations even if an adversary has full access to the implementation of the encryption algorithm and full control over its execution platforms. Despite its practical importance, progress has not been substantial. In fact, it is repeated that as a proposal for a white-box implementation is reported, an attack of lower complexity is soon announced. This is mainly because most cryptanalytic methods target specific implementations, and there is no general attack tool for white-box cryptography. In this paper, we present an analytic toolbox on white-box implementations of the Chow et al.'s style using lookup tables. According to our toolbox, for a substitution-linear transformation cipher on n bits with S-boxes on m bits, the complexity for recovering the $$O\((3n/max(m_Q,m))2^{3max(m_Q,m)}+2min\{(n/m)L^{m+3}2^{2m},\;(n/m)L^32^{3m}+n{\log}L{\cdot}2^{L/2}\}\)$$, where $m_Q$ is the input size of nonlinear encodings,$m_A$ is the minimized block size of linear encodings, and $L=lcm(m_A,m_Q)$. As a result, a white-box implementation in the Chow et al.'s framework has complexity at most $O\(min\{(2^{2m}/m)n^{m+4},\;n{\log}n{\cdot}2^{n/2}\}\)$ which is much less than $2^n$. To overcome this, we introduce an idea that obfuscates two advanced encryption standard (AES)-128 ciphers at once with input/output encoding on 256 bits. To reduce storage, we use a sparse unsplit input encoding. As a result, our white-box AES implementation has up to 110-bit security against our toolbox, close to that of the original cipher. More generally, we may consider a white-box implementation of the t parallel encryption of AES to increase security.

Design of Advanced Multiplicative Inverse Operation Circuit for AES Encryption (AES 암호화를 위한 개선된 곱셈 역원 연산기 설계)

  • Kim, Jong-Won;Kang, Min-Sup
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.4
    • /
    • pp.1-6
    • /
    • 2020
  • This paper proposes the design of an advanced S-Box for calculating multiplicative inverse in AES encryption process. In this approach, advanced S-box module is first designed based on composite field, and then the performance evaluation is performed for S-box with multi-stage pipelining architecture. In the proposed S-Box architecture, each module for multiplicative inverse is constructed using combinational logic for realizing both small-area and high-speed. Through logic synthesis result, the designed 3-stage pipelined S-Box shows speed improvement of about 28% compared to the conventional method. The proposed advanced AES S-Box is performed modelling at the mixed level using Verilog-HDL, and logic synthesis is also performed on Spartan 3s1500l FPGA using Xilinx ISE 14.7 tool.

Effect of windshields on the aerodynamic performance of a four-box bridge deck

  • Chen, Xi;Dragomirescu, Elena
    • Wind and Structures
    • /
    • v.31 no.1
    • /
    • pp.31-41
    • /
    • 2020
  • A new type of bridge deck section consisting of four-box decks, two side decks for vehicular traffic lanes and two middle decks for railway traffic, has been experimentally investigated for determining its aerodynamic properties. The eight flutter derivatives were determined by the Iterative Least Squares (ILS) method for this new type of four-box deck model, with two windshields of 30 mm and 50 mm height respectively. Wind tunnel experiments were performed for angles of attack α = ±6°, ±4°, ±2° and 0° and Re numbers of 4.85×105 to 6.06×105 and it was found that the four-box deck with the 50 mm windshields had a better aerodynamic performance. Also, the results showed that the installation of the windshields reduced the values of the lift coefficient CL for the negative angles attack in the range of -6° to 0°, but the drag coefficient CD increased in the positive angle of attack range. However, galloping instability was not encountered for the tested reduced wind speeds, of up to 9.8. The aerodynamic force coefficients and the flutter derivatives for the four-box deck model were consistent with the results reported for the Messina triple-box bridge deck, but were different from those reported for the twin-box bridge decks.