• 제목/요약/키워드: K-562

검색결과 974건 처리시간 0.032초

Chemosensitizing effect and mechanism of imperatorin on the anti-tumor activity of doxorubicin in tumor cells and transplantation tumor model

  • Liang, Xin-li;Ji, Miao-miao;Liao, Zheng-gen;Zhao, Guo-wei;Tang, Xi-lan;Dong, Wei
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제26권3호
    • /
    • pp.145-155
    • /
    • 2022
  • Multidrug resistance of tumors has been a severe obstacle to the success of cancer chemotherapy. The study wants to investigate the reversal effects of imperatorin (IMP) on doxorubicin (DOX) resistance in K562/DOX leukemia cells, A2780/Taxol cells and in NOD/SCID mice, to explore the possible molecular mechanisms. K562/DOX and A2780/Taxol cells were treated with various concentrations of DOX and Taol with or without different concentrations of IMP, respectively. K562/DOX xenograft model was used to assess anti-tumor effect of IMP combined with DOX. MTT assay, Rhodamine 123 efflux assay, RT-PCR, and Western blot analysis were determined in vivo and in vitro. Results showed that IMP significantly enhanced the cytotoxicity of DOX and Taxol toward corresponding resistance cells. In vivo results illustrated both the tumor volume and tumor weight were significantly decreased after 2-week treatment with IMP combined with DOX compared to the DOX alone group. Western blotting and RT-PCR analyses indicated that IMP downregulated the expression of P-gp in K562/DOX xenograft tumors in NOD/SCID mice. We also evaluated glycolysis and glutamine metabolism in K562/DOX cells by measuring glucose consumption and lactate production. The results revealed that IMP could significantly reduce the glucose consumption and lactate production of K562/DOX cells. Furthermore, IMP could also remarkably repress the glutamine consumption, α-KG and ATP production of K562/DOX cells. Thus, IMP may sensitize K562/DOX cells to DOX and enhance the antitumor effect of DOX in K562/DOX xenograft tumors in NOD/SCID mice. IMP may be an adjuvant therapy to mitigate the multidrug resistance in leukemia chemotherapy.

만성 골수성 백혈병 K562세포의 분화 내성 분획에서 백혈병 유지 세포의 동정 (Presence of Leukemia-maintaining Cells in Differentiation-resistant Fraction of K562 Chronic Myelogenous Leukemia)

  • 이홍래;김미주;하가희;김소중;김선희;강치덕
    • 생명과학회지
    • /
    • 제23권2호
    • /
    • pp.197-206
    • /
    • 2013
  • 본 연구에서는 K562 만성 골수성 백혈병 세포를 이용하여, 분화 유도에 의해 암 유지/개시 세포의 자기 재생능력이 소실되는 지를 조사하였다. K562 세포의 집락(colony) 형성 능력은 PMA 처리에 의하여 현저히 억제되었고, 1 nM 이상의 PMA 처리시에는 집락이 형성되지 않았으나, 약 40%의 세포는 여전히 연한천(soft agar)에서 살아 있었다. PMA 4 nM을 3일간 처리하고 제거한 후 분리한 집락 형성 세포에 다시 10 nM PMA를 3일간 처리하였을 때, 약 70% 정도의 세포가 분화되었고, 6주 후에 PMA를 처리하였을 때는 분화율이 약 90%로 K562 모세포에 PMA를 처리한 수준에 도달하였다. 한편, imatinib-내성 K562 변종 세포들은 연한천에서 집락을 형성하지 않았으며, 대부분의 세포가 CD44 양성이었다. Imatinib 무첨가 배지에서 4개월 배양 후, 이 세포들의 표면 CD44발현량은 감소하였고, K562/R3 imatinib-내성 변종 세포에서는 연한천에서 작은 집락이 형성되었다. 이 세포에서는 imatinib-내성 변종 세포에서 소실되었던 Bcr-Abl이 다시 발현되기 시작하였고, 다른 표현형들도 부분적으로 회복되었다. 이러한 결과는 백혈병 유지 세포가 분화에 내성을 나타내는 세포이며, 분화 유도제를 오랜 기간 동안 고농도로 처리할 수 있다면 백혈병 줄기 세포를 제거하기 위한 분화 요법이 백혈병 치료에 적용될 수 있음을 시사하였다.

Selective miRNA Expression Profile in Chronic Myeloid Leukemia K562 Cell-derived Exosomes

  • Feng, Dan-Qin;Huang, Bo;Li, Jing;Liu, Jing;Chen, Xi-Min;Xu, Yan-Mei;Chen, Xin;Zhang, Hai-Bin;Hu, Long-Hua;Wang, Xiao-Zhong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권12호
    • /
    • pp.7501-7508
    • /
    • 2013
  • Background: Chronic myeloid leukemia (CML) is a myeloproliferative disorder of hematopoietic stem cell scarrying the Philadelphia (Ph) chromosome and an oncogenic BCR-ABL1 fusion gene. The tyrosine kinase inhibitor (TKI) of BCR-ABL1 kinase is a treatment of choice for control of CML. Objective: Recent studies have demonstrated that miRNAs within exosomes from cancer cells play crucial roles in initiation and progression. This study was performed to assess miRNAs within exosomes of K562 cells. Methods: miRNA microarray analysis of K562 cells and K562 cell-derived exosomes was conducted with the 6th generation miRCURYTM LNA Array (v.16.0). Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were also carried out. GO terms and signaling pathways were categorized into 66 classes (including homophilic cell adhesion, negative regulation of apoptotic process, cell adhesion) and 26 signaling pathways (such as Wnt). Results: In exosomes, 49 miRNAs were up regulated as compared to K562 cells, and two of them were further confirmed by quantitative real-time PCR. There are differentially expressed miRNAs between K562 cell derived-exosomes and K562 cells. Conclusion: Selectively expressed miRNAs in exosomes may promote the development of CML via effects on interactions (e.g. adhesion) of CML cells with their microenvironment.

인간 백혈병 세포에서 Psuedomonas aeruginosa exotoxin A에 대한 세포독성과 세포자멸사 효과 (The Cytotoxic and Apoptotic Effect of Pseudomonas aeruginosa Exotoxin A on Human Leukemia K-562 Cells)

  • Chang, Jeong-Hyun;Kwon, Heun-Young
    • 대한임상검사과학회지
    • /
    • 제39권2호
    • /
    • pp.68-75
    • /
    • 2007
  • 약 100년 전에 박테리아가 암을 억제한다는 보고를 바탕으로 다양한 미생물이 항암효과를 가지는 백신 개발에 이용되거나 또는 미생물의 세포 밖 독소 단백질을 찾아내고 있다. Psuedomonas aeruginosa exotoxin A(ETA)는 암세포에서 세포성장을 억제하고 세포 죽음을 유발하는 것으로 알려져 있다. 하지만 ETA가 세포 자멸사를 유도하는 정확한 기전은 아직 알려져 있지 않다. 따라서 본 연구에서는 세포자멸사의 유도를 확인하기 위해 K562 cell을 이용하여 세포의 형태학적 변화, 세포독성, Annexin-V binding assay 그리고 세포주기를 분석하였으며, 그 결과로 ETA는 K-562세포에서의 세포증식과 성장을 억제하였고, 세포자멸사 기작을 통한 K-562 암세포의 사멸을 일으켰음을 관찰하였다. 또한 flow cytometric analysis에서는 ETA가 세포주기 중 특히 sub-G1 기를 정지시키는 것으로 나타났다. 본 연구는 ETA가 인간 백혈병 K-562 암세포의 세포성장을 억제하고 sub-G1 기를 정지시킴으로서 세포자멸사를 유도하고 있음을 확인하였다.

  • PDF

Silencing of Suppressor of Cytokine Signaling-3 due to Methylation Results in Phosphorylation of STAT3 in Imatinib Resistant BCR-ABL Positive Chronic Myeloid Leukemia Cells

  • Al-Jamal, Hamid AN;Jusoh, Siti Asmaa Mat;Yong, Ang Cheng;Asan, Jamaruddin Mat;Hassan, Rosline;Johan, Muhammad Farid
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권11호
    • /
    • pp.4555-4561
    • /
    • 2014
  • Background: Silencing due to methylation of suppressor of cytokine signaling-3 (SOCS-3), a negative regulator gene for the JAK/STAT signaling pathway has been reported to play important roles in leukemogenesis. Imatinib mesylate is a tyrosine kinase inhibitor that specifically targets the BCR-ABL protein and induces hematological remission in patients with chronic myeloid leukemia (CML). Unfortunately, the majority of CML patients treated with imatinib develop resistance under prolonged therapy. We here investigated the methylation profile of SOCS-3 gene and its downstream effects in a BCR-ABL positive CML cells resistant to imatinib. Materials and Methods: BCR-ABL positive CML cells resistant to imatinib (K562-R) were developed by overexposure of K562 cell lines to the drug. Cytotoxicity was determined by MTS assays and $IC_{50}$ values calculated. Apoptosis assays were performed using annexin V-FITC binding assays and analyzed by flow cytometry. Methylation profiles were investigated using methylation specific PCR and sequencing analysis of SOCS-1 and SOCS-3 genes. Gene expression was assessed by quantitative real-time PCR, and protein expression and phosphorylation of STAT1, 2 and 3 were examined by Western blotting. Results: The $IC_{50}$ for imatinib on K562 was 362nM compared to 3,952nM for K562-R (p=0.001). Percentage of apoptotic cells in K562 increased upto 50% by increasing the concentration of imatinib, in contrast to only 20% in K562-R (p<0.001). A change from non-methylation of the SOCS-3 gene in K562 to complete methylation in K562-R was observed. Gene expression revealed down-regulation of both SOCS-1 and SOCS-3 genes in resistant cells. STAT3 was phosphorylated in K562-R but not K562. Conclusions: Development of cells resistant to imatinib is feasible by overexposure of the drug to the cells. Activation of STAT3 protein leads to uncontrolled cell proliferation in imatinib resistant BCR-ABL due to DNA methylation of the SOCS-3 gene. Thus SOCS-3 provides a suitable candidate for mechanisms underlying the development of imatinib resistant in CML patients.

K562 세포의 방사선 감수성 변화에 영향을 미치는 신호전달인자 (Signal Transduction Factors on the Modulation of Radiosusceptibility in K562 Cells)

  • 양광모;윤선민;정수진;장지연;조월순;도창호;유여진;신영철;이형식;허원주;임영진;정민호
    • Radiation Oncology Journal
    • /
    • 제21권3호
    • /
    • pp.227-237
    • /
    • 2003
  • 목적: 만성 골수성 백혈병 세포인 K562 세포주는 방사선 및 다양한 항암제에 대한 apoptosis에 저항성을 가진다. 지난 연구에서 K562 세포는 방사선에 대하여 내성반응을 보이며, 세포내 PTK의 작용을 억제하고자 방사선 조사와 함께 투여한 herbimycin A (HMA)에 의하여 방사선에 대한 apoptosis와 같은 감수성반응이 유도되는 반면, genistein에 의하여 방사선에 대한 apoptosis 반응이 저해됨을 확인하였다. 본 연구에서는 타이로신 인산화효소 억제에 의한 K562 세포의 방사선 반응변화를 조절하는 신호전달경로를 조사하였다. 대상 및 방법: K562 세포를 지수증식기의 세포들만 선택하여 실험에 이용하였다. 방사선조사는 6 MeV 선형가속기(Clinac 1800C, Varian)를 이 용하여 $200\~300$ cGy/min 선량률로 $0.5\~12 $ Gy를 균일하게 조사하였다. HMA와 genistein은 각각 $0.25/muM,\;25\muM$을 방사선 조사 후 즉시 투여하였다. 실험에서 신호전달 경로로 abl kinase, MAPK family, NF-kB, c-fos, c-myc, thymidine kinase1 (TK1) 등에서의 단백질 또는 유전자 발현 및 활성을 조사하였다. 또한 약제 투여에 따른 유전자 발현차이(differential gene expression)를 조사하였다. 결과: Abl kinase의 발현 및 활성 변화를 조사하였으나 PTK 저해제에 의한 방사선 유도 세포사의 변화와의 연관성을 찾을 수 없었다. 세포 생존 및 사멸의 신호전달체계에서 주요 조절과정인 MAPK family의 관여 여부 확인에서 방사선으로 인한 SAPK/JNK의 활성화의 유도가 관찰되었으나, PTK 저해제에 따른 변화는 없었으며, 또한 MAPK/ERK와 p38 MAPK 활성은 모든 조건에서 변함 없이 일정하였다. 전사인자 활성화에 대한 조사에서 방사선 조사와 함께 genistein을 투여한 경우에 NF-kB활성이 증가하였다. 유전자 발현 차이의 조사에서 genistein 투여에 의한 TK 1 유전자 발현 및 단백질 활성이 증가하였다. 결론: PTK 억제에 의한 K562 세포의 방사선에 대한 반응 변화는 bcrabl kinase 활성과는 무관하게 진행되며, MAPK family 경로 외의 다른 경로를 통한 전사인자 활성화 과정이 연관되어 있음을 확인하였다.

종양세포(腫瘍細胞)의 염색체(染色體)에 대한 오크라톡신 A의 독성(毒性)에 관한 연구(硏究) (Studies on toxicity of ochratoxin A to chromosomes of turmor cell-line)

  • 윤화중;노민희;김강련
    • 대한수의학회지
    • /
    • 제29권2호
    • /
    • pp.51-57
    • /
    • 1989
  • This study was performed to investigate the toxicity of ochratoxin A (OA) to the chromosomes of $K_{562}$ tumor cell-line in vitro. The results of this experiment were as follows: 1) Chromosomes of $K_{562}$tumor cell-line resulted in pseudotriploidy on the control group. Chromosomes of $K_{562}$ tumor cell-line treated with OA resulted in heteroploidy compared with the control group. The mean number of chromosomes in the karyotype of the control group (60) were 7 in the A group, 5 in the B group, 20 in the C+X group, 7 in the D group, 9 in the E group, 6 in the F group, and 6 in the G+Y group respectively. The number of chromosomes were increased as follows: Treating with $0.7{\mu}M$ OA, the number of chromosomes were increased one in E and F group, two in G+Y group compared with control group. In treated with $1.5{\mu}M$ OA, the increasing number of chromosome was one in E and F group. In treated with $3{\mu}M$ OA, E and F group was increased one and G+Y group were increased two chromosomes compared with control group. But in treated with $6{\mu}M$ OA, the number of chromosome in G+Y group was decreased one. 2) $K_{562}$ tumor cell line treated with OA showed Philadelphia-Chromosome in the long arm of the G group karyotype chromosome. The rate of chromosome aberration in $K_{562}$ tumor cell-line treated with OA was 77% in $0.7{\mu}M$ OA group, 71% in $1.5{\mu}M$ OA group, 82% in $3{\mu}M$ OA group and 94% in $6{\mu}M$ OA group respectively. The rate of chromosome aberration of $K_{562}$ tumor cell-line treated with OA was high in the high dose level of OA, and chromosome aberration of $K_{562}$ tumor cell-line treated with OA showed deletion, minute, dicentric-chromosome and translocation in the long arm of the C-group karyotype. As a result of this study, the toxicity of OA showed deletion, minute, dicentric-chromosome and translocation in the long arm of the C-group karyotype, and then, the toxicity of OA resulted in the damage to RNA and protein synthesis in $K_{562}$ tumor cell-line, and the C-group karyotype of $K_{562}$ tumor cell-line was target of the toxicity of OA.

  • PDF

Antitumor Activity of Arylacetylshikonin Analogues

  • Kim, Seon-Hee;Song, Gyu-Yong;Jin, Guang-Zhu;Ahn, Byung-Zun
    • Archives of Pharmacal Research
    • /
    • 제19권5호
    • /
    • pp.416-422
    • /
    • 1996
  • Twenty one phenylacetylshikonin analogues were synthesized from various subsitituted phenyl acetic acids and their cytotoxicity values against A549, K562 and L1210 cell lines and antitumor action in mice bearing S-180 cells were measured. All of phenylacetylshikonin analogues expressed a potent cytotoxicity $(ED_{50}, 0.1-1.80{\mu}g/ml)$ against L1210 and K562 cells. L1210 cells were the most sensitive to shikonin analogues among these cells. Except 4-methosyphenylacetylshikonin $(0.098 {\mu}g/ml)$, and a-acetoxyphenylacetylshikonin $(0.10 {\mu}g/ml)$, all other shikonin derivatives sshowed higher $ED_{50}$ values than phenylacetylshikonin $(0.13{\mu}g/ml)$, in L1210. In K562 cell, a-substitution of phenylacetylshikonin $(0.1{\mu}g/ml)$, while other subsitutions increased it slightly; 4-methoxyphenylacetylshikonin $(0.033{\mu}g/ml)$ showed a exceptionally good cytotoxicity against K562 cell. 4-Halogenation tended to decrease the cytotoxic effect on L1210 cells, while it enhanced the effect on K562; 4-bromophenylacetyl $$[ED_{50};(L1210)=1.76{\mu}g/ml, ;ED_{50};(K 562)=0.32 {\mu}g/ml]$$ and 4-chlorophenylacetyl shikonin $$[ED_{50};(L1210)=1.64 {\mu}g/ml, ;ED_{50};(K562)=0.32 {\mu}g/ml]$$. In contrast, A549 cells were much less sensitive to these shikonin analogues which showed $ED_{50}$ values of$1.5-1.35 {\mu}g/ml)$.Most of phenylacetylshikonin derivatives showed good antitumor activity in mice bearing S-180 cells. a-A-cetoxyphenylacetylshikonin and 4-dimethylaminophenylacetylshikonin showed highest T/C value (192-195%), implying that introduction of a-acetyl or of 4-dimethylamino group enhanced the antitumor activity as shown for 4-dimethylaminophenylacetylshikonin (T/C, 192%). It might be due to improvement of water solubility by dimethylamino group in the molecule.

  • PDF

Lactosylceramide α2,3-Sialyltransferase Is Induced Via a PKC/ERK/CREB-dependent Pathway in K562 Human Leukemia Cells

  • Choi, Hee-Jung;Park, Young-Guk;Kim, Cheorl-Ho
    • Molecules and Cells
    • /
    • 제23권2호
    • /
    • pp.138-144
    • /
    • 2007
  • Previously we showed that the human GM3 synthase gene was expressed during the induction of megakaryocytic differentiation in human leukemia K562 cells by phorbol 12-myristate 13-acetate (PMA). In this study we found that treatment of PMA-induced K562 cells with $G{\ddot{o}}6976$, a specific inhibitor of PKC, and U0126, an inhibitor of the extracellular signal-regulated kinase (ERK) reduced expression of GM3 synthase, whereas wortmannin, an inhibitor of phosphoinositide 3-kinase (PI3K) did not. Moreover, activation of ERK and cAMP response element binding protein (CREB) was prevented by pretreatment with $G{\ddot{o}}6976$ and U0126. PMA stimulated the promoter activity of the 5'-flanking region from -177 to -83 region of the GM3 synthase gene, and mutation or deletion of a CREB site located around -143 of the promoter reduced PMA-stimulated promoter activity, as did the inhibitors $G{\ddot{o}}6976$ and U0126. Our results demonstrate that induction of GM3 synthase during megakaryocytic differentiation in PMA-stimulated human leukemia K562 cells depends upon the PKC/ERK/CREB pathway.

Evidence for Regulation of Interaction of Endogenous Protein Kinase C(Pkc) Substrates with Plasma Membrane by PKC Down-Regulation in K562 Cells

  • Kim, Young-Sook
    • Archives of Pharmacal Research
    • /
    • 제18권5호
    • /
    • pp.301-307
    • /
    • 1995
  • In the particulate fraction obtained from PKC-down regulated K562 cells by treatment for 24 h with 200nM TPA, phosphorylation of two proteins with molecular weight, 100 kDa and 23 kDa (designated p100 and p23, respectvely) was depleted and addition of exogenous purified PKC to this fraction failed to testore their phosphorylation. However, in the soluble fraction, all of phosphoproteins abolished by long-term treatment with TPA were restored by exogenously added PKC. Phosphorylation of two proteins was increased by short-term tretment (20 min), and diminished with the persistant exposure to TPA as well as at a concentration as low as 1nM. When K562 cells were treated with 1 nM and 200 nM TPA for 24 h, phosphorylation of p100 was restored with or without exogenous PKC on 2-3day and 6day after removal of treated TPA, respectively. Two-dimensional electrophoresis of phosphoproteins revealed that phosphorylated p100 (pl=5.9) and p66 species were completely absent from the particulate fraction of K562 cells treated with 200nM TPA for 24 h. These results suggest that the interaction of sensitive endogenous substrates, p100 and p23 with the plasma membrane might be regulated by PKC-down regulation without displacement to the cytosol and the interaction of p100 with the membrane might be reveersible.

  • PDF