Proceedings of the Korea Information Processing Society Conference
/
2014.11a
/
pp.733-736
/
2014
최근 대용량 데이터에 대한 효율적인 데이터 분석 기법이 활발히 연구되고 있다. 대표적인 기법으로는 맵리듀스 환경에서 보로노이 다이어그램을 이용한 k 최근접점 조인(VkNN-join) 알고리즘이 존재한다. VkNN-join 알고리즘은 부분집합 Ri에 연관된 부분집합 Sj만을 후보탐색 영역으로 선정하여 질의를 처리하기 때문에 질의처리 시간을 감소시킨다. 그러나 VkNN-join은 색인 구축 비용이 높으며, kNN 연산 오버헤드가 큰 문제점이 존재한다. 이를 해결하기 위해, 본 논문에서는 대용량 데이터 분석을 위한 맵리듀스 기반 kNN join 질의처리 알고리즘을 제안한다. 제안하는 알고리즘은 시드 기반의 동적 분할을 통해 색인구조 구축비용을 감소시킨다. 또한 시드 간 평균 거리를 기반으로 후보 영역을 선정함으로써, 연산 오버헤드를 감소시킨다. 아울러, 성능 평가를 통해 제안하는 기법이 질의처리 시간 측면에서 기존 기법에 비해 우수함을 나타낸다.
Proceedings of the Korea Information Processing Society Conference
/
2001.10a
/
pp.755-758
/
2001
본 논문에서는 서로 다른 크기의 클러스터에 대해서 효과적으로 데이터를 분류할 수 있는 내부클러스터를 이용한 개선된 FCM 알고리즘을 제안하였다. 내부클러스터는 평균내부거리 안쪽에 속하는 데이터 집합으로 클러스터의 크기와 밀도에 비례한다. 그러므로 이를 이용한 개선된 FCM 알고리즘은 기존의 FCM 알고리즘이 클러스터 크기가 다를 경우 퍼지분할과 중심탐색을 제대로 하지 못하는 문제점을 개선한 수 있다. 실험을 통하여 개선된 FCM 알고리즘이 분류 엔트로피에 의해 기존의 FCM 알고리즘 보다 더 좋은 결과를 나타냄을 알 수 있었다.
Proceedings of the Korea Information Processing Society Conference
/
2003.11a
/
pp.591-594
/
2003
본 논문은 중심 화소의 FOD 성분값과 인접 가해 성분값의 평균으로 축소 성분값을 산출함으로써 FOD에 적응성을 부여한 디지털 영상 축소 알고리즘의 성능을 분석함에 그 목적이 있다. 제안된 방법은, 중심 화소의 우측 및 하측 인접 화소의 기울기의 크기를 이용하여 산출한 각각의 국부 가해 가중치를 우측 및 하측 인접 화소값에 곱한 후에 그 결과를 합산함으로써 인접 가해 성분값을 구하고 FOD 성분값과 이 인접 가해 성분값을 평균하여 축소 성분값을 구하는 과정을 전체 영역에 반복적으로 수행함으로써 축소 영상을 얻을 수 있다. 제안된 축소 방법에 따르면, 적은 연산량을 요하면서도 평균적으로 우수한 결과를 제공하는 FOD 방식의 장점을 취하면서 인접 화소의 유효 가해 성분을 각각의 국부 가해 가중치에 따라 축소 성분값에 적응적으로 반영함으로써 FOD의 단점인 몽롱화 현상을 효과적으로 억제시킬 수 있는 바, 개선된 정보 보존성을 제공할 수 있는 이점이 있다. 본고에서는 주관적인 성능과 하드웨어 복잡도 측면에서 제안된 방법과 기존의 각 방식에 대한 성능을 분석 평가한다.
스케쥴링 알고리즘들은 제안된 패킷 지연을 가진 각 연결에 대하여보장된 대역을 제공한다. 스케쥴링 알고리즘의 일종인 WRR은 매우 간편하며 각 큐에 다른 가중치를 할당하여 여러 큐를 직접 제어한다. BSW 알고리즘은 WRR 스케쥴러를 구현하는데 버퍼 관리를 효율적으로 수행하도록 제안되었다. 그러나 BSW 알고리즘은 VC에 실제 할당된 가중치 보다 더 많은 가중치를 할당하고 서비스 받을 VC의 큐가 비어있을 때 서비스를 수행하지 않기 때문에 셀 지연 및 최대 큐 길이에서 심각한 성능 저하를 유발한다. 본 논문에서는 WRR 스케쥴링 알고리즘을 효율적으로 수행할 수 있는 새로운 BSW 구조를 제안한다. 또한, 새로운 BSW 구조에 적합한 셀 스케쥴링 알고리즘을 개발한다. 제안된 BSW 구조와 알고리즘은 VC에 할당된 가중치를 정확히 유지 할 수 있고, 서비스 받을 VC큐가 비어 있을 경우 다른 VC 셀을 서비스하여 평균 셀 지연 및 최대 버퍼 크기를 감소시킨다. 그리고 셀 서비스율을 전체적으로 증가시킨다.
Proceedings of the Acoustical Society of Korea Conference
/
spring
/
pp.233-236
/
2002
ES(Exponentially weighted Stepsize) 알고리즘은 연산 과정이 간단하고 수렴 속도가 빠르지만 Stepsize 값을 결정하기 위해 일정한 조건에서 결정된 공간 임펄스 응답들을 이용하기 때문에 외부 잡음이 발생할 경우 음향 반향 제거 성능이 저하된다. 본 논문에서는 기존의 반향 제거기에 Stepsize 생성기를 추가하여 외부 잡음에 대한 ES 알고리즘의 단점을 개선하고 잡음에 대한 강건함을 향상시키는 새로운 반향 제거기를 개발하였다. Stepsize 생성기는 두 개의 이동 평균기를 이용하여 외부 잡음에 크기와는 독립적으로 Stepsize 값을 결정하며, 이로부터 대각선(diagonal) 모양을 가지는 Stepsize 행렬을 생성하여 반향 제거기에 적용한다. 본 논문에서는 NLMS 알고리즘, ES 알고리즘, 제안된 알고리즘의 수렴 특성을 잡음의 크기별로 시뮬레이션 하였으며, 또한 제안된 알고리즘의 잔여 에러의 크기도 다른 두 알고리즘에 비해 5[dB] 에서 10[dB]정도 작아지는 것을 확인하였다.
Proceedings of the Korean Information Science Society Conference
/
2010.06b
/
pp.1-5
/
2010
정렬 알고리즘에서 사용한 원소 간 비교횟수를 기준으로, 비교횟수가 많게 되는 순열을 최악의 인스턴스(worst-case instance)라 명명하고 이를 찾기 위해 유전 알고리즘(genetic algorithm)을 사용하였다. 잘 알려진 퀵 정렬(quick sort), 머지 정렬(merge sort), 힙 정렬(heap sort), 삽입 정렬(insertion sort), 쉘 정렬(shell sort), 개선된 퀵 정렬(advanced quick sort)에 대해서 실험하였다. 머지 정렬과 삽입 정렬에 대해 탐색한 인스턴스는 최악의 인스턴스에 거의 근접하였다. 퀵 정렬은 크기가 증가함에 따라 최악의 인스턴스 탐색이 어려웠다. 나머지 정렬에 대해서 찾은 인스턴스는 최악의 인스턴스인지 이론적으로 보장할 수 없지만, 임의의 1,000개 순열을 정렬해서 얻은 비교횟수들의 평균치보다는 훨씬 높았다. 본 논문의 최악의 인스턴스를 탐색하는 시도는 알고리즘의 성능 검증을 위한 테스트 데이터를 생성한다는 점에서 의미가 크다.
In this paper, the realization of a hearing aid adaptively cancelling feedback noise was considered. Conventional least mean square method in time domain was transformed into frequency domain in order to minimize computational burden. The adaptive filter algorithm was evaluated by Matlab (Matrix laboratory), and it was confirmed by CSR 8675 Bluetooth DSP IC (Digital Signal Processor Integrated Circuit) chip firmware realization. Some remote control features by a smart phone was added to the smart hearing aid for user interface easiness.
The Transactions of the Korea Information Processing Society
/
v.6
no.7
/
pp.1849-1857
/
1999
We proposed the RPA (Recursive Partition Averaging) method in order to improve the storage requirement and classification rate of the Memory Based Reasoning. This algorithm recursively partitions the pattern space until each hyperrectangle contains only those patterns of the same class, then it computes the average values of patterns in each hyperrectangle to extract a representative. Also we have used the mutual information between the features and classes as weights for features to improve the classification performance. The proposed algorithm used 30~90% of memory space that is needed in the k-NN (k-Nearest Neighbors) classifier, and showed a comparable classification performance to the k-NN. Also, by reducing the number of stored patterns, it showed an excellent result in terms of classification time when we compare it to the k-NN.
It is very difficult to predict time-series data. This is because data obtained from the signal having a non-linear characteristic has an uncertainty. In this paper, By differentiating time-series data is the average of the past data under the premise that change depending on what pattern, and find the soft look of time-series change pattern. This paper also apply the probability variables to generalize time-series data having a specific data according to the reflection ratio of the differentiation. The predicted value is estimated by removing cyclic movement and seasonal fluctuation, and reflect the trend by extracting the irregular fluctuation. Predicted value has demonstrated the superiority of the proposed algorithm and compared with the best results by a simple moving average and the moving average.
Kernel-based mean-shift object tracking has gained more interests nowadays, with the aid of its feasibility of reliable real-time implementation of object tracking. This algorithm calculates the best mean-shift vector based on the color histogram similarity between target model and target candidate models, where the color histograms are usually produced after uniform color-space quantization for the implementation of real-time tracker. However, when the image of target model has a reduced contrast, such uniform quantization produces the histogram model having large values only for a few histogram bins, resulting in a reduced accuracy of similarity comparison. To solve this problem, a non-uniform quantization algorithm has been proposed, but it is hard to apply to real-time tracking applications due to its high complexity. Therefore, this paper proposes a fast non-uniform color-space quantization method using the histogram equalization, providing an adjusted histogram distribution such that the bins of target model histogram have as many meaningful values as possible. Using the proposed method, the number of bins involved in similarity comparison has been increased, resulting in an enhanced accuracy of the proposed mean-shift tracker. Simulations with various test videos demonstrate the proposed algorithm provides similar or better tracking results to the previous non-uniform quantization scheme with significantly reduced computation complexity.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.