• Title/Summary/Keyword: K-$\varepsilon$ model

Search Result 750, Processing Time 0.228 seconds

Numerical Simulation of Separation using RANS model in Curved Channel (RANS를 이용한 곡선 수로에서 박리 현상 모의)

  • Lee, Seonmin;Choi, Sung-Uk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.63-63
    • /
    • 2016
  • 자연 하천은 연속적인 곡선 흐름을 가지고 있으며, 하천의 흐름을 해석하는 것은 복잡하고 어려운 일이다. 게다가 자연하천에서는 유사이송에 의해 하상변동이 발생하며 이를 정확하게 예측하는 것은 공학적 문제 해결에 중요한 역할을 한다. 곡선 흐름에서의 하상변동양상은 원심력에 의한 이차류로 인하여 유사가 하천의 내측으로 이동하게 되고, 하천의 외측에는 침식, 내측에는 퇴적이 된다. 이와 같은 현상은 원심력뿐만이 아니라 하천의 곡선에 의해 발생하게 되는 박리 또한 중요한 원인으로 이야기 되고 있으며, 선행 연구자들에 의해서 박리의 영향이 작지 않음을 알 수 있다. 자연하천에서의 정확한 하상변동을 예측하기 위해서는 원심력에 의한 이차류와 박리의 현상을 정확히 모의할 수 있어야하며, 이를 위해 3차원 모형이 필요하다. 따라서 본 연구에서는 3차원 unsteady RANS 모형을 이용하여 곡선수로에서 박리가 발생하는 현상을 모의하고자 한다. 곡선수로를 모의하기 위해서 곡선좌표계를 사용하였으며, 난류모형으로는 standard $k-{\varepsilon}$$k-{\omega}$ SST을 사용하였다. 또한 fractional step method를 이용하여 유속과 압력 커플링을 하였다. 그 결과 곡선수로의 흐름모의에서 레이놀즈 수가 큰 경우 박리가 발생하는 것을 확인하였으며, 두 난류모형 모두 곡선 흐름에서의 박리 현상을 모의할 수 있었다.

  • PDF

Unsteady RANS Analysis of the Hydrodynamic Response for a Ship with Forward Speed in Regular Wave (규칙파중 전진하는 선박의 유체역학적 응답에 대한 비정상 수치해석)

  • Park, Il-Ryong;Kim, Kwang-Soo;Kim, Jin;Van, Suak-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.1
    • /
    • pp.29-41
    • /
    • 2008
  • The present paper provides a CFD analysis of diffraction problem for a ship with forward speed using an unsteady RANS simulation method, a WAVIS code. The WAVIS viscous solver adopting a finite volume method has second order accuracy in time and field discretizaions for the RANS equations. A two phase level-set method and a realizable ${\kappa}-{\varepsilon}$ turbulence model are adopted to compute the free surface and to meet the turbulence closure, respectively. To validate the capability of the present numerical methods for the simulation of an unsteady progressive regular wave, computations are performed for three grid sets with refinement ratio of ${\sqrt{2}}$. The main simulation is performed for a DTMB5512 model with a forward speed in a regular head sea condition. Validation of the present numerical method is carried out by comparing the present CFD results with available unsteady experimental data published in the 2005 Tokyo CFD Workshop: resistance, heave force, pitch moment, unsteady free surface elevations and velocity fields.

Monitoring of Water Content and Electrical Conductivity in Paddy Soil Profile by Time Domain Reflectometry (Time Domain Reflectometry를 이용한 논토양 단면의 수분함량 및 전기전도도 모니터링)

  • Yoo, Sun-Ho;Han, Gwang Hyun;Bae, Byung-Sul;Park, Moo-Eon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.4
    • /
    • pp.365-374
    • /
    • 1999
  • To obtain informations on vertical movements of water and solute in rice paddy field during the growing season, soil water contents and bulk electrical conductivities (${\sigma}_a$) were monitored using Time Domain Reflectometry. Soil water contents with depth showed ${\varepsilon}$-shaped profiles constituting of partly saturated zones at top and bottom layers and unsaturated zones (20-100cm) between them. Analysis by fitting with a van Genuchten-type model showed that soil water contents at 60cm were affected by both water supplied from surface water and groundwater, but at 80cm mainly affected by groundwater. Water percolation at the rate of 2cm $day^{-1}$ rates were, but large fluctuation from 10 to 38cm $day^{-1}$ in C1 layer (60-90cm). Therefore, it can be said that any water or solute entering C1 layer is very rapidly transported to C2 layer, especially during the period of high groundwater table staying, and retarded to a relatively constant percolation rate in C2 layer. This can be manifested by the fact that rapid decrease and steady increase of electrical conductivities at 50 and 110cm depth respectively, were found around that period.

  • PDF

The Effects of Windbreaks on Reduction of Suspended Particles (방풍벽에 의한 비산 먼지 저감 효과)

  • Song, Chang-Keun;Kim, Jae-Jin;Song, Dong-Woong
    • Atmosphere
    • /
    • v.17 no.4
    • /
    • pp.315-326
    • /
    • 2007
  • The effects of windbreaks on the reduction of suspended particles are investigated using a computational fluid dynamics (CFD) model with the ${\kappa}-{\varepsilon}$ turbulence closure scheme based on the renormalization group (RNG) theory. In the control experiment, the recirculation zones behind the storage piles are generated and, as a whole, relatively monotonous flow patterns appear. When the windbreaks with the 0% porosity are constructed, the recirculation zones are generated by the windbreaks and very complicated flow patterns appear due to the interference between the windbreaks and storage piles. The porosity of the windbreaks suppresses the generation of the recirculation zone and decreases the wind velocity in the windbreaks as well as that outside the windbreaks. As the emission of suspended particles from the storage piles are closely related with the friction velocity at the surfaces of the storage piles, variation of the friction velocity and total amount of the emission of the suspended particles with the height and porosity of the windbreaks are investigated. The results show that higher and more porous windbreaks emit less suspended particles and that the reduction effect of the porosity is still more effective than that of the height. In the case of the windbreak with 30 m height and 50% porosity, friction velocities above the storage piles are smaller than the critical friction velocity above which particles would be suspended. As a result, total amount of suspended particles are much fewer than those in other cases.

The Effect of the Gurney Flap on NACA 00XX Airfoil (NACA 00XX 익형에 대한 Gurney 플랩의 영향)

  • Yoo, Neung-Soo
    • Journal of Industrial Technology
    • /
    • v.22 no.A
    • /
    • pp.59-65
    • /
    • 2002
  • The objective of this study is to provide the quantitative and qualitative computational data about the aerodynamic performance of Gurney flap on NACA 00XX airfoils and to show the optimum Gurney flap height for each airfoil. The test was performed on 7 different airfoils from NACA 0006 to NACA0024, which have a 3% chord(=c) thickness interval. For every NACA 00XX airfoil, Gurney flap heights were changed by 0.5% or 0.25% chord interval from 0 to 2.0%c to study their effects. The aerodynamic characteristics of clean and Gurney flap airfoil were compared, and the influences of Gurney flap on each airfoil were compared. As a CFD (Computational Fluid Dynamics) solver, FLUENT, based on Navier-Stokes code, was used to calculate the flow field around the airfoil. The fully-turbulent results were obtained using the standard $k-{\varepsilon}$ two-equation turbulence model. The test results showed that Gurney flap increased the lift coefficient much more than the drag coefficient over a certain range of the lift coefficient, so the lift-to-drag ratio, which is the important index of airfoil performance, was increased. Based on the test results, the relationship between the airfoil thickness and the optimum Gurney flap heights was suggested.

  • PDF

A STUDY ON FLOW MIXING IMPROVEMENT OF SELECTIVE CATALYTIC REDUCTION USING GASEOUS REDUCTANT (기상 환원제를 사용하는 선택적 환원촉매에서 유동혼합 개선에 관한 연구)

  • Ko, S.C.;Lee, B.H.;Cho, S.H.;Lee, S.H.;Hong, S.T.;Lee, D.Y.
    • Journal of computational fluids engineering
    • /
    • v.15 no.1
    • /
    • pp.56-63
    • /
    • 2010
  • Since emission regulations for vehicles have become more stringent, SCR technology has drawn a strong attention in order to reduce NOx emissions. Optimal design of a reductant injection nozzle and a multi-hole plate located between the cone and catalyst is critical in that the uniform distribution of reductant is necessary to maximize the NOx conversion efficiency and minimize the slip of reductant in SCR. In this work, an LPG fuel(C3H8 in vapor state) was used as a reductant for LPG vehicles. A Realizable k-$\varepsilon$ model is used for turbulence, and SCR body is defined as porous media with inertia and viscous resistances measured in this work. Effect of the number of nozzle holes on the flow mixing index was analyzed, which revealed that a four hole nozzle shows the best performance in terms of uniformity of flow. An installment of a multi-hole plate at the entrance of catalyst was evaluated with flow mixing index, uniformity of flow, and pressure drop. A multi-hole plate with gradual hole diameter change in three steps showed the best uniformity of flow within the conditions suggested in this work.

The Effect of Convergent Nozzle Angle on a Spiral Jet Flow (스파이럴 제트 유동에 미치는 축소노즐 각도의 영향)

  • Cho, Wee-Bun;Baek, Seung-Cheol;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1482-1487
    • /
    • 2004
  • In general the swirl jet is generated by the injected flow that is forced to the tangential direction. A spiral nozzle which is composed of an annular slit and a convergent nozzle, is released the spiral jet that is generated by the radial flow injection through an annular slit. The objective of the present study is to investigate the additional study that is studied a changed the convergent nozzle angle and nozzle length. In the present computation, a finite volume scheme is used to solve three dimensional Navier-Stokes equations with RNG $k-{\varepsilon}$ turbulent model. The convergent nozzle angle and the nozzle length of the spiral nozzle are varied to obtain different spiral flows inside the conical convergent nozzle. The present computational results are compared with the previous experimental data. The results obtained show that the convergent nozzle angle and the nozzle length of the spiral jet strongly influence the characteristics of the spiral jets, such as a tangential and a jet width.

  • PDF

Numerical simulation on starting transients in supersonic exhaust diffuser; evolution of internal shock structures with different initial cell pressures (초음속 디퓨져 시동 과정에 관한 수치 모사; 초기 진공도에 따른 디퓨져 내부 충격파 구조의 발달 과정)

  • Park Byung-Hoon;Lim Ji-Hwan;Yoon Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.46-55
    • /
    • 2005
  • For the sea-level performance test of rocket motor designed to operate in the upper atmosphere, ejectors with no induced secondary flow are generally used, which serves dual purposes of evacuating the test cell and performing as a supersonic exhaust diffuser (SED). The main concern of this research is to simulate starting transients in order to visualize evolution of internal shock structures in SED with different initial cell (vacuum chamber) pressures. RANS code with low Reynolds $k-\varepsilon$ turbulence model was employed for these computations. Numerical results were compared with the pressure measurements previously performed [Proceedings of 2004 Annual Conference, KIMST], and showed good agreements with pressure-time history of measured data. In the case of low vacuum chamber pressure, abrupt impingement of the under-expanded supersonic jet from the nozzle onto the diffuser wall was observed, whereas initial impingement point was located downstream and moved slowly upstream in the case of non-vacuum chamber pressure. In spite of initially dissimilar evolution of shock structures, iso-mach contour revealed that the steady shock structures had little difference except the location of flow separation and normal shock.

  • PDF

Effect of the Heights of Air Dam on the Pressure Distribution of the Vehicle Surface (에어댐의 높이가 차체 표면의 압력변화에 미치는 영향)

  • Park, Jong-Soo;Kim, Sung-Joon
    • Journal of Industrial Technology
    • /
    • v.22 no.B
    • /
    • pp.27-34
    • /
    • 2002
  • 3-D numerical studies are performed to investigate the effect of the air dam height and approaching air velocities on the pressure distribution of notchback road vehicle. For this purpose, the models of test vehicle with four different air dam heights are introduced and PHOENICS, a commercial CFD code, is used to simulate the flow phenomena and to estimate the values of pressure coefficients along the surface of vehicle. The standard $k-{\varepsilon}$ model is adopted for the simulation of turbulence. The numerical results show that the height variation of air dam makes almost no influence on the distribution of the value of pressure coefficient along upper and rear surface but makes strong effects on the bottom surface. That is, the value of pressure coefficient becomes smaller as the height is increased along the bottom surface. Approaching air velocity makes no differences on pressure coefficients. Through the analysis of pressure coefficient on the vehicle surface, one tries to assess aerodynamic drag and lift of vehicle. The pressure distribution on the bottom surface affects more on lift than the pressure distribution on the upper surface of the vehicle does. The increase of air dam height makes positive effects on the lift decrease but no effects on drag reduction.

  • PDF

A Numerical Study on the Performance Analysis of the Mixed Flow Pump for FPSO (수치해석을 이용한 FPSO용 사류펌프 성능해석 연구)

  • Kang, Kyung-Won;Kim, Young-Hun;Kim, Young-Ju;Woo, Nam-Sub;Kwon, Jae-Ki;Yoon, Myung-O
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.5
    • /
    • pp.12-17
    • /
    • 2011
  • The seawater lift pump system is responsible for maintaining the open canal level to provide the suction flow of circulating water pump at the set point. The objective of this paper is to design a 2-stage mixed flow pump (for seawater lifting) by inverse design method and to evaluate the overall performance and the local flow fields of the pump by using a commercial CFD code. Rotating speed of the impeller is 1,750 rpm with the flow rate of 2,700 $m^3$/h. Finite volume method with structured mesh and realized k-${\varepsilon}$ turbulent model is used to guaranty more accurate prediction of turbulent flow in the pump impeller. The numerical results such as static head, brake horse power and efficiency of the mixed flow pump are compared with the design data. The simulated results are good agreement with the design data less 3% error.