• Title/Summary/Keyword: K-$\varepsilon$ model

Search Result 750, Processing Time 0.028 seconds

A Study on the Performance Improvement of Pressure Compensating Temperature Control Valve (압력 평형식 온도조절 밸브 성능 향상을 위한 연구)

  • Kim T.-A.;Kim Youn J.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.671-674
    • /
    • 2002
  • Pressure compensating temperature control valve(TCV) is one of the important control devices, which is used to maintain the constant temperature of working fluid in power and chemical plants. The ratio of cylinder hole diameters of inlet and outlet is the main design parameters of TCV. So this needs to be investigated to improve the function of control of temperature and void fraction. In this study, numerical analysis is carried out with various ratios of cylinder hole diameters of the inlet and outlet in the TCV. Especial1y, the distribution of the static pressure Is investigated to calculate the new coefficient($C_{\upsilon}$) and resistance coefficient(K). The governing equations are derived from making using of three-dimensional Naver-Stokes equations with standard $k-{\varepsilon}$ turbulence model and SIMPLE algorithm. Using a commercial code, PHOENICS, pressure and flow fields in TCV are calculated with different inlet and outlet diameters of the cylinder hole for cold and hot water passages.

  • PDF

A Study on the Development of the Water Hammering Cleaner System for Pipeline (수격파를 이용한 배관 세정기 개발 연구)

  • Kim H.-S.;Kim Youn J.;Park K.-J.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.675-678
    • /
    • 2002
  • In order to develop the water hammering cleaner system for removing scale and slime in inner metal or non-metal piping wall, the flow characteristics are investigated by numerical and experimental methods. The air bubbles in the piping systems as a shock wave are formed and transferred with the water flow in the piping. The governing equations are derived from making using of three-dimensional Wavier-Stokes equations with the standard $k-{\varepsilon}$ turbulence model and SIMPLE algorithm. Pressure distributions in the pipeline are calculated for different air supply pressures. Also, we prepared some experimental results of the pressure differences for various air supply times.

  • PDF

A Numerical Study on Axial Inlet Cyclone for Diesel Engine (디젤 엔진용 싸이클론 내부 수치 해석)

  • Kim, S.K.;Son, C.S.;Kim, I.K.
    • Journal of Power System Engineering
    • /
    • v.10 no.2
    • /
    • pp.16-21
    • /
    • 2006
  • On this study, numerical analysis was performed for the 3 dimensional flow field of gas and particle phase for axial inlet cyclone, a part of dust collector. We applied FVM to visualize the gas phase. The flow was solved using ${\kappa}-{\varepsilon}$ turbulence model. The major parameters considered in this study were helical guide vane, inner diameter, length. Particle trajectory calculations were performed for the particle sizes of $5{\mu}m{\sim}75{\mu}m$. The distribution curve of particle sizes was made of Rosin-Rammler function. The simulation results show various gas flows, particle trajectories on numerical models.

  • PDF

Development of Viscous Boundary Conditions in an Immersed Cartesian Grid Framework

  • Lee, Jae-Doo
    • Journal of Ship and Ocean Technology
    • /
    • v.10 no.3
    • /
    • pp.1-16
    • /
    • 2006
  • Despite the high cost of memory and CPU time required to resolve the boundary layer, a viscous unstructured grid solver has many advantages over a structured grid solver such as the convenience in automated grid generation and vortex capturing by solution adaption. In present study, an unstructured Cartesian grid solver is developed on the basis of the existing Euler solver, NASCART-GT. Instead of cut-cell approach, immersed boundary approach is applied with ghost cell boundary condition, which can be easily applied to a moving grid solver. The standard $k-{\varepsilon}$ model by Launder and Spalding is employed for the turbulence modeling, and a new wall function approach is devised for the unstructured Cartesian grid solver. Developed approach is validated and the efficiency of the developed boundary condition is tested in 2-D flow field around a flat plate, NACA0012 airfoil, and axisymmetric hemispheroid.

Evaluation of Turbulent Models on the Mixing Flow Structure of $45^{\circ}$ Impinging Jet by Two Round Jets (두 원형분류에 의한 $45^{\circ}$ 충돌분류의 흔합유동구조에 대한 난류모델 평가)

  • Kim, J.K.;Oh, S.H.
    • Journal of Power System Engineering
    • /
    • v.13 no.5
    • /
    • pp.34-39
    • /
    • 2009
  • In this paper, the CFD analysis using various turbulent models has been performed to evaluate which type of turbulent models can predict well the mixing flow structure of $45^{\circ}$ impinging round jet. This CFD analysis has been carried out through the commercial Fluent software. As a result, any of turbulent models cannot predict the experimental results definitely all over the flow range. However, as compared with the experimental results, the turbulent model of realizable(RLZ) k-$\varepsilon$ only predicts well in the limited range between X/$X_0=1.1$ and X/$X_0=2.0$.

  • PDF

Numerical Analysis of Flow Path inside the Feedwater Valve (급수밸브 내부의 유동경로 수치해석)

  • Kwag, Seung-Hyun;Won, Yong-Hee
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.416-419
    • /
    • 2006
  • Numerical analysis is carried out to identify the wall thinning effect inside the feed water valve. The finite volume method is applied to make analysis for the viscous flows. The commercial cock FLUENT is used for the simulation and the GAMBIT for the grid generation. The RNG $\kappa-\varepsilon$ model is used for the turbulence and the tet-hybrid grid is applied for the modeling. The velocity vector, the pressure contour, the change of residual along the iteration number, and the dynamic head are predicted for the hydrodynamic investigation.

  • PDF

NUMERICAL ANALYSIS OF CAVITATION FLOW AROUND OGIVE-CYLINDER AND VENTURI (Ogive-Cylinder 주위와 Venturi에서의 캐비테이션 전산 유동해석)

  • Lee, J.C.;Ahn, B.K.;Kim, D.H.;Kim, C.K.;Park, W.G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.130-133
    • /
    • 2007
  • A two-phase method in CFD has been developed and is applied to model the cavitation flow. The governing equation system is two-phase Navier-Stokes equation, comprised of the mixture mass, momentum and liquid-phase mass equation. It employs an implicite, dual time, preconditioned algorithm using finite difference scheme in curvilineal coordinates and Chien ${\kappa}-{\varepsilon}$ turbulence equation. The experimental cavitating flows around ogive-cylinder and venturi type objects are employed to test the solver. To prove the capabilities of the solver, several three-dimentional examples are presented.

  • PDF

A Study of Thrust-Vectoring Nozzle Flow Using Coflow-Counterflow Concept (Coflow-Counterflow 개념을 이용한 추력벡터 노즐에서 발생하는 유동특성에 관한 연구)

  • Jung, Sung-Jae;Sanalkumar, V.R.;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.592-597
    • /
    • 2003
  • Thrust vector control using a coflow-counterflow concept is achieved by suction and blowing through a slot adjacent to a primary jet which is shrouded by a suction collar. In the present study, the flow characteristics of thrust vectoring is investigated using a numerical method. The nozzle has a design Mach number of 2.0, and the operation pressure ratio is varied to obtain various flow features of the nozzle flow. Test conditions are in the range of the nozzle pressure ratio from 6.0 to 10.0, and a suction pressure from 90kPa to 35kPa. Two-dimensional, compressible Navier-Stokes computations are conducted with RNG ${\kappa}-{\varepsilon}$ turbulence model. The computational results provide an understanding of the detailed physics of the thrust vectoring process. It is found that an increase in the nozzle pressure ratio leads to increased thrust efficiency but reduces the thrust vector angle.

  • PDF

Development of Heat Transfer and Evaporation Correlations for the Turbulent Natural Convection in the Vertical Channel by Using Numerical Analysis

  • Kang, Han-Ok;Lee, Un-Chul
    • Nuclear Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.532-541
    • /
    • 1996
  • Theoretical and numerical study on heat transfer and evaporation in the vertical channel has been carried out and basic correlations have been derived for the heat transfer evaluation of PCCS. Analysis program was developed with low-Reynolds-number k-$\varepsilon$ model and surface transfer rates were calculated for the turbulent natural convection in the vertical channel. In relation to dry cooling by buoyancy-driven air, first, the system parameters which govern overall heat transfer rate are determined through the adequate nondimensionalization procedure. After comparison with existing experimental data, numerical results are used to derive heat transfer correlation by sensitivity calculations. In relation to wet cooling by falling water film, numerical analysis are carried out for evaporation process with real film surface conditions and evaporation correlation is derived through analogy concept and correction factors.

  • PDF

Numerical Analysis on the Flow Field and Heat Transfer Characteristics of Longitudinal Vortices in Turbulent Boundary Layer - On the Common Flow Up - (3차원 난류경계층 내에 존재하는 종방향 와동의 유동장 및 열전달 특성에 관한 수치해석(II) - Common Flow Up에 관하여 -)

  • Yang Jang-Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.9
    • /
    • pp.799-807
    • /
    • 2005
  • The flow characteristics and the heat transfer rate on a surface by the interaction of a pair of vortices are studied numerically. To analyze the common flow up produced by vortex generators in a rectangular channel flow, the pseudo-compressibility viscous method is introduced into the Reynolds-averaged Navier-Stokes equation for 3-dimensional unsteady, incompressible viscous flows. To predict turbulence characteristics, a two-layer $k-\varepsilon$ turbulence model is used on the flat plate 3-dimensional turbulence boundary The computational results predict accurately Reynolds stress, turbulent kinetic energy and flow field generated by the vortex generators. The numerical results, such as thermal boundary layers, skin friction characteristics and heat transfers, are also reasonably close to the experimental data.