• Title/Summary/Keyword: K groove

Search Result 729, Processing Time 0.026 seconds

Fabrication of Mechanical fatigue flawed Specimen and Evaluation of Flaw Size (기계적 피로결함 시험편 제조 및 결함 크기 평가)

  • Hong, Jae-Keun;Kim, Woo-Sung;Son, Young-Ho;Park, Ban-Uk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.1
    • /
    • pp.38-44
    • /
    • 2003
  • Performance demonstration with real flawed specimens has been strongly required for nondestructive evaluation of safety class components in nuclear power plant. Mechanical or thermal fatigue crack and intergranular stress corrosion cracking could be occured in the in-service nuclear power plant and mechanical fatigue crack was selected to study in this paper. Specimen was designed to produce mechanical fatigue flaw under tensile stress. The number of cycles and the level of stress were controlled to obtain the desired flaw roughness. After the accurate physical measurement of the flaw size and location, fracture surface was seal-welded in place to ensure the designed location and site. The remaining weld groove was then filled by using gas-tungsten are welding(GTAW) and flux-cored arc welding(FCAW). Results of radio graphic and ultrasonic testing showed that fatigue cracks were consistent with the designed size and location in the final specimens.

Studies on the Improvement of Butt Welding Characteristic of Polyethylene Pipes (PE 이중벽관의 맞대기 융착 용접 강도 향상에 관한 연구)

  • An, Ju-Seon;Lee, Kyng-Won;Kim, Jae-Sung;Lee, Bo-Young
    • Journal of Welding and Joining
    • /
    • v.29 no.1
    • /
    • pp.85-89
    • /
    • 2011
  • Waste water is disposed to sewage disposal plant by underground PE double wall pipes. Various processes have been introduced to join PE pipes, but most of these methods have many disadvantages such as costs, lack of reliability and difficulties in joining, etc. Recently butt welding has been paid much attention to joint PE pipes as this process has many advantages such as cost, safety and reliability. In this study, newly developed heat plate, a patent-pending heat plate with a groove, was used to butt-weld PE double wall pipes with different misalignment gaps to simulate real underground conditions, and the butt welding temperature of PE pipe was determined by thermal analysis (Thermal Gravimetric Analysis, Differential Scanning Calorimetry and Dynamic Mechanical Analysis). The resulting joining characteristics of double wall pipes were compared with those from a conventional heat plate, in terms of stiffness, flattening and leakage tests. The results from the stiffness and flattening test showed that there were no big differences between the butt-welded joints made from these two plates. From the leakage test, although PE pipes welded with a conventional heat plate did leak below the required test conditions (10 min. at 0.75kgf/cm2), the pipes welded with a patent-pending grooved heat plate did not show any leakage even at a pressure 1.5 times higher than the required conditions. It was noted that by utilizing a grooved heat plate more complete fusion at the pipe joints could be obtained, which in turn induced a high quality joints.

Effects of Hin Recombinase Dimer Interface Mutants on DNA Binding and Recombination

  • Lee, Hee-Jung;Lee, Sun-Young;Lee, Hee-Jin;Lim, Heon-Man
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2001.06a
    • /
    • pp.27-31
    • /
    • 2001
  • Previous biochemical assays and a structural model indicated that the dimer interface of the Hin recombinase is composed of the two a-helices. To elucidate the structure and function of the helix, amino acids in the N-terminal end of the helix, where the two helices contact most, were randomized, and inversion-incompetent mutants were selected. To investigate why the mutants lost their inversion activities, the DNA binding, hix-pairing, invertasome formation, and DNA cleavage activities were assayed using in vivo and in vitro methodologies. Results indicated that the mutants could be divided into 4 classes based on their DNA binding activity. We proposed that the a-helices might place a DNA binding motif of Hin properly to the minor DNA groove of the recombination site. All the mutants except the non-binders were able to perform hix-pairing and invertasome formation, suggesting that the dimer interface is not involved in the process of hix-pairing or invertasome formation. The inversion-incompetent phenotype of the binders was caused by the inability of mutants to perform the DNA cleavage activity. The less binders exhibited wild-type level of hix-pairing activity because the hix-pairing activity overcomes the DNA binding defect of the less binders. This phenotype of the less binders suggests that the binding domains of Hin could mediate Hin-Hin interaction during hix-pairing..

  • PDF

Surface and Tribological Characteristics of Air-cooled and Oil-cooled AISI 4140 Steel (냉각공정에 따른 AISI 4140 강의 표면 및 트라이볼로지 특성)

  • Cho, Hak-Rae;Lee, Sang Don;Son, Jung Ho;Chung, Koo-Hyun
    • Tribology and Lubricants
    • /
    • v.32 no.5
    • /
    • pp.160-165
    • /
    • 2016
  • AISI 4140 steel is widely used in various mechanical components owing to its superior mechanical properties. Surface hardening techniques are often used to further improve the properties, particularly for applications with moving components. The aim of this research is to understand the effect of heat treatment process on surface properties and tribological characteristics of AISI 4140 steel. In this work, we prepare two different AISI 4140 steel specimens- one cooled by air and one by oil- and determine surface properties such as surface topography and roughness using a confocal microscope. We also observe the cross-sections of the specimens using a scanning electron microscope to understand the difference in the material structure. In addition, we assess the hardness with respect to the distance from the surface using a micro-Vickers hardness tester. After characterizing the surfaces of the specimens, we investigate the wear characteristics of the specimens under hydrodynamic lubrication. The results show the presence of grooves on the surface of the oil-cooled specimens. It is likely that such grooves are formed during the cooling process using the oil. However, we observe no other significant differences in the surface properties of the specimens. The wear test results show the occurrence of severe wear on the oil-cooled specimens, which may be due to the groove formed on the surface. The results of this work may be helpful to improve surface properties using surface hardening techniques from a tribological perspective.

A Study on the Optimum Clearance Selection of Fuel Pump Journal Bearing with Elasto-hydrodynamic Lubrication Analysis (탄성유체윤활해석에 의한 연료 펌프 저널베어링 최적간극 선정 연구)

  • An, Sung Chan;Lee, Sang Don;Son, Jung Ho;Cho, Yong Joo
    • Tribology and Lubricants
    • /
    • v.33 no.1
    • /
    • pp.23-30
    • /
    • 2017
  • The electric controlled marine diesel engine has fuel pump generating the high pressurized fuel for fuel injection to combustion chamber via a common rail. Fuel pump consists of a cam-roller system. Journal bearing installed between a roller and a cam-roller pin is subjected to fluctuating heavy and instant loads by cam lift. First, Kinematic analysis is carried out to predict bearing loads during one cycle acting on the journal bearing. Second, flexible multi-body dynamic analysis and transient elasto-hydrodynamic(EHD) lubrication analysis for journal bearing considering elastic deformation of cam-roller pin, roller and bearing are conducted using AVL EXCITE/PU software to predict lubrication performance. The clearance ratio and journal groove shape providing lubrication oil are important parameter in bearing design having good performance and can be changed easier than other design parameters such as diameter, width, oil supply pressure and bearing material grade. Generally, journal bearing performance is represented by the minimum oil film thickness(MOFT) and peak oil film pressure(POFP). As well as the traditional design parameters(MOFT, POFP), in this study, temperature rise of lubrication oil is also evaluated through the side leakage flow of supplied oil. By the evaluating MOFT, POFP and temperature rise, the optimum bearing clearance ratio is decided.

Characteristic Analysis of Eddy Current Array Probe Signal in Combo Calibration Standard Tube Using Electromagnetic Numerical Analysis (전자기 수치해석을 이용한 표준보정시험편의 배열형 와전류 탐촉자 신호 특성 해석)

  • Kim, Ji-Ho;Lee, Hyang-Beom
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.4
    • /
    • pp.330-337
    • /
    • 2010
  • In this paper, 3-dimensional electromagnetic numerical analysis is performed about the eddy current(EC) array probe characteristic which is the next generation probe for accurate diagnosis of steam generator(SG) in nuclear power plants(NPPs). ASME(American Society of Mechanical Engineers) Standard and X-probe combo calibration standard tube are selected for acquisition of eddy current testing(ECT) signals and this result of compared with the real test signals for reasonability of result. Based on the analysis result of calibration standard tube, ECT signals that are about the defects of pitting, stress corrosion cracking(SCC), multiple SCC and wear is obtained. Material of specimen was Inconel 600 which is usually used for SG tubes in NPPs. The operation frequency of 300 kHz were used. The signal characteristics could be observed according to the various defects. The results in this paper can be helpful when the ECT signals from EC array probe are evaluated and analyzed.

Experimental Investigation on Thermal Characteristics of Heat Pipes Using Water-based MWCNT Nanofluids (물 기반 탄소나노튜브 나노유체 히트파이프의 열적 특성에 관한 실험적 해석)

  • Ha, Hyo-Jun;Kong, Yu-Chan;Do, Kyu-Hyung;Jang, Seok-Pil
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.7
    • /
    • pp.528-534
    • /
    • 2011
  • In this paper, thermal characteristics of cylindrical grooved wick heat pipes with water-based MWCNT nanofluids as working medium are experimentally investigated. Volume fractions of nanoparticles are varied with 0.1% to 0.5%. Transient hot wire method developed in house is used to measure the thermal conductivity of nanofluids. It is enhanced by up to 29% compared to that of DI water. The thermal resistances and temperature distributions at the surface of the heat pipes are measured at the same evaporation temperature. The experimental results show that the thermal resistance of the heat pipes with water-based MWCNT nanofluids as working fluid is reduced up to 35.2% compared with that of heat pipe using DI water. The reduction rate of thermal resistance is greater than the enhancement rate of thermal conductivity. Finally, based on the experimental results, we present the reduction of the thermal resistances of the heat pipes compared with conventional heat pipes cannot be explained by only the thermal conductivity of water-based MWCNT nanofluids.

A study on the micro-formability of $Zr_{62}Cu_{17}Ni_{13}Al_8$ bulk metallic glass using micro-forging and finite element method application (Zr 계 벌크비정질합금의 마이크로 단조를 이용한 미세 성형성 평가와 유한요소해석 적용에 관한 연구)

  • Kang S.G.;Na Y.S.;Park K.Y.;Son S.C.;Lee J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.589-592
    • /
    • 2005
  • Micro-forming is a suited technology to manufacture very small metallic parts(several $mm{\sim}{\mu}m$). Micro-forming of $Zr_{62}Cu_{17}Ni_{13}Al_8$ bulk metallic glass(BMG) as a candidate material for this developing process are feasible at a relatively low stress in the supercooled liquid state without any crystallization during hot deformation. In this study, micro-formability of a representative bulk metallic glass, $Zr_{62}Cu_{17}Ni_{13}Al_8$, was investigated for micro-forging of U-shape pattern. Micro-formability was estimated by comparing $R_f$ values $(=A_f/A_g)$, where Ag is cross-sectional area of U groove, and $A_f$ the filled area by material. Microforging process was simulated and analyzed by applying finite element method. FEM simulation results should reasonable agreement with the experimental results when the material properties and simulation conditions such as top die speed, remeshing criteria and boundary conditions tightly controlled. The micro-formability of $Zr_{62}Cu_{17}Ni_{13}Al_8$ was increased with increasing load and time in the temperature range of the supercooled liquid state. Also, FEM Simulation using DEFORM was confirmed to be applicable for the micro-forming process simulation.

  • PDF

Evaluation of Bilayer Polycaprolactone Scaffold for Osteochondral Regeneration in Rabbits

  • Park, Min-hyeok;Hwang, Ya-won;Jeong, Do-Sun;Kim, Gon-hyung
    • Journal of Veterinary Clinics
    • /
    • v.33 no.6
    • /
    • pp.332-339
    • /
    • 2016
  • Polycaprolactone (PCL) scaffold have been developed as an alternative to natural donor tissue to repair a large osteochondral defect. The objective of this study is to evaluate efficacy and biocompatibility of bilayer PCL scaffold implanted for osteochondral repair in rabbit. Twenty-two male New Zealand White rabbits were used in this animal experiment. Rabbits were divided into three groups. Experimental surgery was carried out under general anesthesia. Osteochondral defects (5 mm diameter and 5 mm deep) were made in the center of the patellar groove using a 5 mm diameter biopsy punch. In group I (3D plotting) and group II (salt-leaching), the scaffold was implanted using the press-fitted technique into the defect. In control group, after osteochondral defect was created, the defect was left without implant. After four and eight weeks, rabbits were sacrificed and the defects were evaluated by macro -and microscopical methods. There were not found animal death and severe inflammatory evidence during the experimental periods. There were no significant differences between the experimental groups in gross evaluation. However the group I scored significantly higher than group II at 8 weeks in histological evaluation (P < 0.05). The 3-D plotting PCL scaffold was more suitable method for reconstruction of osteochondral defect than a salt-leaching PCL scaffold.

Feasibility Study on the Utilization of EMAT Technology for In-line Inspection of Gas Pipeline

  • Cho, Sung-Ho;Yoo, Hui-Ryong;Rho, Yong-Woo;Kim, Hak-Joon;Kim, Dae-Kwang;Song, Sung-Jin;Park, Gwan-Soo
    • Journal of Magnetics
    • /
    • v.16 no.1
    • /
    • pp.36-41
    • /
    • 2011
  • If gas is leaking out of gas pipelines, it could cause a huge explosion. Accordingly, it is important to ensure the integrity of gas pipelines. Traditionally, over the years, gas-operating companies have used the ILI system, which is based on axial magnetic flux leakage (MFL), to inspect the gas pipelines. Relatively, there is a low probability of detection (POD) for the axial defects with the axial MFL-based ILI. To prevent the buried pipeline from corrosion, it requires a protective coating. In addition to the potential damage to the coating by environmental factors and external forces, there could be defects on the damaged coating area. Thus, it is essential that nondestructive evaluation methods for detecting axial defects (axial cracks, axial groove) and damaged coating be developed. In this study, an electromagnetic acoustic transducer (EMAT) sensor was designed and fabricated for detecting axial defects and coating disbondment. In order to validate the performances of the developed EMAT sensor, experiments were performed with specimens from axial cracks, axial grooves, and coating disbondment. The experimental results showed that the developed EMAT sensor could detect not only the axial cracks (minimum 5% depth of wall thickness) and axial grooves (minimum 10% depth of wall thickness), but also the coating disbondment.