Proceedings of the Korean Society of Broadcast Engineers Conference
/
2016.06a
/
pp.1-4
/
2016
효율적으로 깊이지도를 획득하기 위해 다양한 방법의 지역 기반스테레오 매칭 방법이 사용된다. 일반적인 지역기반 스테레오 매칭에 사용되는 비용값 계산 방법을 통해 깊이지도를 생성하게 되면 객체의 경계 영역이 무너지거나, 유사한 텍스쳐 정보가 연속적으로 나타나는 영역에서 부정확한 깊이값을 얻는 문제가 발생한다. 본 논문에서는 깊이지도의 정확성을 높이기 위해 2가지 단계를 거쳐 최종 깊이지도를 생성한다. 처음으로, 일반적으로 사용하는 지역기반 스테레오 매칭 비용 함수와 입력 영상의 기울기를 고려한 초기 비용값을 가이드 필터를 이용하여 최적의 비용값을 찾아 초기 변위지도를 생성한다. 스테레오매칭을 수행할 경우, 시점의 차이로 인해 보이지 않는 영역에서 정확한 변위값을 찾지 못하는 문제가 발생한다. 이러한 문제를 해결하기 위해 좌영상과 우영상을 기반으로 획득한 변위지도를 사용하여 교차검사를 함으로써 폐색영역을 찾아낸다. 폐색 영역을 이웃한 화소의 값을 사용하여 채울 경우 실선과 같은 오류가 결과 영상에 나타나게 된다. 이러한 오류 영역을 제거하기 위해 마지막으로 가중치를 적용한 중간값 필터를 적용한다. 실험 결과 제안한 방법을 사용하여 획득한 깊이지도가 기존의 방법보다 정확한 깊이값을 얻는 것을 확인할 수 있었다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2015.11a
/
pp.63-66
/
2015
3차원 영상을 생성하기 위해 스테레오 매칭을 통해 깊이 정보를 획득한다. 이때 발생하는 경계영역과 텍스처가 부족한 부분의 깊이정보 부정확성 문제를 해결하기 위해 영상 분할 기반 스테레오 매칭 방법을 제안한다. 일반적으로 사용하는 윈도우 기반 스테레오 매칭 결과를 기반으로 분할된 영상 내에서 최적의 변위 값을 재 할당함으로서 깊이정보의 정확성을 향상시킬 수 있다. Mean-shift는 참조 영상에서 화소 간 평균값 차이가 최대가 되는 영역들을 반복적으로 찾는다. 유사한 평균값을 갖는 영역들을 기반으로 영상을 분할하는 것을 Mean-shift를 이용한 영상분할 이라고 한다. 분할된 영상은 각 영역을 대표하는 패치 구조를 가지고 있어 참조 영상에 포함되어있는 잡음에 강인한 특성을 지닌다. 스테레오 매칭을 통해 화소별로 변위 값을 할당해주는 대신, 분할된 영상을 이용하여 각 분할 영역에 동일한 변위 값을 할당한다. 분할된 영상에 동일한 변위 정보를 할당할 경우 객체와 배경의 경계영역에서 잘못된 변위 값이 할당되는 경우가 발생한다. 이러한 경계 영역의 변위정보 부정확성을 보완하기 위해 화소의 기울기 항을 비용 값 계산 과정에 추가하여 단점을 보완한다. 최종 비용 값 계산을 통해 획득한 초기 변위 지도에 중간 값 필터를 적용하여 분류된 영역에 동일한 변위 값을 할당한다. 제안한 방법을 적용하여 경계영역의 정확도가 향상된 최종 변위 지도를 획득한다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2016.11a
/
pp.92-93
/
2016
정확한 변위정보를 추정하기 위해 다양한 비용 값 계산함수 또는 비용 값 합산 방법들이 개발되었다. 본 논문에서는 비용 값 계산을 위해 좌, 우영상의 기울기와 SAD(Sum of Absolute Differences)를 이용하며 비용 값 합산을 위해 가이드 영상 필터링을 사용한다. 가이드 영상 필터링은 가이드 영상의 종류에 따라 필터링결과가 크게 변하게 되는데, 스테레오 정합에 사용된 원본 입력 영상을 가이드 영상으로 사용할 경우 정확한 화소 값을 가지고 있기 때문에 경계영역을 보존하며 필터링 수행이 가능하다. 하지만 가이드 필터링은 가이드 영상으로부터 미리 지정해준 이웃한 화소와의 거리와 색상차이의 분산 값만을 고려하여 필터링을 수행하기 때문에 설정 변수 값에 매우 의존적인 특성을 갖는다. 가이드 필터링 과정에서 변수에 대한 의존성을 낮추고 경계영역의 정확도를 높이기 위해 우선 평활화 필터를 이용하여 경계영역을 추출한다. 원본 입력영상을 사용하여 경계영역을 추출할 경우 객체 내부의 많은 텍스처 영역의 정보까지 추출되지만, 평활화 필터를 이용할 경우 정확한 경계 영역의 정보만을 추출 할 수 있다. 추출된 경계영역에 대해서만 높은 가중치를 사용한 뒤 기존의 가이드 영상 필터링과 혼합하여 최종 비용 값을 합산한다. 제안한 방법을 사용하여 경계영역의 정확도가 향상된 최종 변위 지도를 획득할 수 있었다.
Kim, MinJong;Cho, Sungchul;Jeong, Hyerin;Lee, YungSeop;Lim, Changwon
The Korean Journal of Applied Statistics
/
v.32
no.5
/
pp.693-702
/
2019
Deep learning has gained popularity for the classification and prediction task. Neural network layers become deeper as more data becomes available. Saturation is the phenomenon that the gradient of an activation function gets closer to 0 and can happen when the value of weight is too big. Increased importance has been placed on the issue of saturation which limits the ability of weight to learn. To resolve this problem, Glorot and Bengio (Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, 249-256, 2010) claimed that efficient neural network training is possible when data flows variously between layers. They argued that variance over the output of each layer and variance over input of each layer are equal. They proposed a method of initialization that the variance of the output of each layer and the variance of the input should be the same. In this paper, we propose a new method of establishing initialization by adopting truncated normal distribution and truncated cauchy distribution. We decide where to truncate the distribution while adapting the initialization method by Glorot and Bengio (2010). Variances are made over output and input equal that are then accomplished by setting variances equal to the variance of truncated distribution. It manipulates the distribution so that the initial values of weights would not grow so large and with values that simultaneously get close to zero. To compare the performance of our proposed method with existing methods, we conducted experiments on MNIST and CIFAR-10 data using DNN and CNN. Our proposed method outperformed existing methods in terms of accuracy.
In this paper, the initial value problem in clustering using K-means or Fuzzy-c-means is considered to reduce the number of iterations. Conventionally the initial values in clustering using K-means or Fuzzy-c-means are chosen randomly, which sometimes brings the results that the process of clustering converges to undesired center points. The choice of intial value has been one of the well-known subjects to be solved. The system of clustering using K-means or Fuzzy-c-means is sensitive to the choice of intial values. As an approach to the problem, the uniform partitioning method is employed to extract the optimal initial point for each clustering of data. Experimental results are presented to demonstrate the superiority of the proposed method, which reduces the number of iterations for the central points of clustering groups.
Lim, Kyoung-Jae;Engel Bernard A.;Kim, Ki-Sung;Choi, Joong-Dae
Journal of Korean Society of Rural Planning
/
v.10
no.4
s.25
/
pp.55-64
/
2004
National Agricultural Pesticide Risk Analysis (NAPRA) WWW 시스템 (http://pasture.ecn.purdue.edu/${\sim}napra$)은 각기 다른 영농방법이 지표수질, 유사, 그리고 지하수질에 미치는 영향을 평가하기 위하여 개발되었다. 이 NAPRA WWW 시스템은 Total Maximum Daily Loads와 같은 수질 요건을 만족시킬 수 있는 최적영농 방법이 무엇인지 찾는데, 그리고 수질측면에서 취약한 지역을 찾아내는데 매우 효율적인 시스템이다. 이 NAPRA WWW 시스템을 이용하여 미국 인디애나주의 수계에 대해서, NAPRA 모의 Nitrogen과 Atrazine 결과를 실측치와 비교하였다. 18개 수계에 대해서 NAPRA 예측 질소값과 실측 질소값을 비교한 결과 $R^2$ 값은 0.51이고, 6개 수계에 대해서 NAPRA 예측 Atrazine값과 실측값을 비교한 결과 $R^2$ 값은 0.87이었다. 이 연구에서 보여지는 바와 같이 NAPRA WWW 시스템은 수계내에서 질소와 Atrazine에 따른 오염지역을 찾아내는데 효율적으로 사용될 수 있는 시스템이다.
Proceedings of the Korean Information Science Society Conference
/
2006.10b
/
pp.480-484
/
2006
본 논문에서는 코드 영역을 분리하기 위한 전처리 과정 중 코드 추출에 적합한 자동 이진화 알고리즘을 제안하여, 반복과정을 제거하고 정확한 코드영역 추출로 인식률 및 속도를 향상 시켰다. 배경이 복잡한 이미지가 들어 올 경우 기존의 전역 평균 임계값이나 클래스간의 분산을 이용한 방법으로는 이미지 코드 영역을 찾아 낼 수 없었던 문제를 해결하기 위하여 이미지 코드 주변에 배경과 구분을 두기 위한 흰색 영역이 있다는 점을 착안, 상하좌우 방향 바깥쪽에서 안쪽으로 탐색하여 가장 밝은 값을 갖는 값을 찾아내고 찾아낸 그룹 중 가장 낮은 값을 임계값으로 선택하여 최적의 임계값을 찾아 내었고 이를 통해 복잡한 영상 내에서도 이미지 코드 영역을 찾아낼 수 있다. 제안된 이진화 알고리즘의 성능을 평가하기 위하여 2000장의 테스트 이미지에 적용한 결과, 기존의 이진화 알고리즘들 보다 정확성뿐만 아니라 속도 면에서도 우수한 것을 확인하였다.
In this study, the optimization algorithm by inverse analysis that is the core of the adaptive management technique was adopted to update the soil engineering properties based on the ground response during the construction. Adaptive management technique is the framework wherein construction and design procedures are adjusted based on observations and measurements made as construction proceeds. To evaluate the performance of the adaptive management technique, the numerical simulation for the triaxial tests and the synthetic deep excavation were conducted with the Hardening Soil model. To effectively conduct the analysis, the effective parameters among the parameters employed in the model were selected based on the composite scaled sensitivity analysis. The results from the undrained triaxial tests performed with soft Chicago clays were used for the parameter calibration. The simulation for the synthetic deep excavation were conducted assuming that the soil engineering parameters obtained from the triaxial simulation represent the actual field condition. These values were used as the reference values. The observation for the synthetic deep excavation simulations was the horizontal displacement of the support wall that has the highest composite scaled sensitivity among the other possible observations. It was found that the horizontal displacement of the support wall with the various initial soil properties were converged to the reference displacement by using the adaptive management technique.
LDA를 이용한 얼굴 인식에서 발생하는 small sample sire 문제를 해결하기 위해서 regularization method를 주로 사용한다. 이 방법을 사용하게 되면 클래스 내 분산행렬의 특이성을 없앨 수 있지만, 클래스 내 분산행렬과 단위행렬 $\alpha$를 곱한 값을 더하는 과정에서 $\alpha$의 값을 임의적으로 정해주어야 되고 이 값에 따라 인식률이 개선되지 않을 수 있다는 문제점이 있다. Resampling 개념을 이용하여 학습 데이터의 수를 늘리게 되면 regularization method보다 개선된 인식률을 얻을 수 있다. 또한 경험적으로 $\alpha$값을 정해 주어야 하고, $\alpha$값에 따라 인식률의 변통이 생길 수 있는 단점이 개선되는 효과를 얻을 수 있다.
본 논문은 제어 공정의 파라미터의 동정과 축소모델을 이용하여 선형 및 비선형 특성을 고려한 PID 제어기 설계를 제안하였다. 제어기 파라미터값은 2차의 지연시간을 갖는 축소 모델의 파라미터값에 의해 결정되며, 외란 및 제어 공정의 파라미터 값이 변할 때에는 실제 모델의 동정을 통해 구하며, 또한 실제 공정과 축소 모델의 관계식을 통해 제어 파라미터 값을 실시간으로 보정하여 제어한다. 시뮬레이션을 통하여 실시간 모델 동정 및 제어 파라미터 값이 보정됨을 확인 할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.