• Title/Summary/Keyword: K/Ar ages

Search Result 101, Processing Time 0.021 seconds

K-Ar and $^{40}$ Ar/$^{39}$ Ar Ages from Metasediments in the Okcheon Metamorphic Belt and their Tectonic Implication (옥천 변성대 변성퇴적암의 K-Ar및 $^{40}$ Ar/$^{39}$ Ar 연대와 그 의의)

  • 김성원;오창환;이덕수;이정후
    • The Journal of the Petrological Society of Korea
    • /
    • v.12 no.2
    • /
    • pp.79-99
    • /
    • 2003
  • Muscovite and biotite from 52 metasediments and 5 granites in the Hwasan area, the southwest of the Okcheon metamorphic belt and the Miwon-Jeungpyeong area, central Okcheon metamorphic belt were dated by the K-Ar and $^{40}$ Ar/$^{39}$ Ar methods. Muscovite and biotite ages from metapelitic and psammitic rocks (metasediments) of the Boeun and Pibanryeong units in the Hwasan area are concentrated in the mid-Jurassic (149-180 Ma). K-Ar and $^{40}$ Ar/$^{39}$ Ar ages for metapelitic and psammitic rocks of the Boeun and Pibanryeong units in the Miwon-Jeungpyeong area show complicated age distribution. Muscovite and biotite ages are classified by three groups, 142-194 Ma, 216-234 Ma, and 241-277 Ma. Younger (Cretaceous) ages occur only in metasediments close to Cretaceous granitic rocks in the southeastern region and the older ages of 216-277 Ma are restricted to the middle Part of the Jeungpyeong area. Most ages in the other area of the central Okcheon metamorphic belt fall between 142-194 Ma (Jurassic). K-Ar and $^{40}$ Ar/$^{39}$ Ar ages for granite from the northern part in the both the southwest and central Okcheon metamorphic belt also gave middle Jurassic ages (156-168 Ma). The similar ages from both metasediments and granites in the study areas indicate simultaneous cooling of both rocks to 300-350$^{\circ}C$ during the middle Jurassic. The state of graphitization of carbonaceous material of all metasediments in the study areas Indicates fully ordered graphite falling within a small range, from 3.353 to 3.359 ${\AA}$, which indicate amphibolite facies regional metamorphism. In the southern sector of the Boeun unit from the Hwasan area, metamorphic grade indicated by mineral paragenesis during regional intermediate-P/T metamorphism is greenschist facies. Whereas, the $d_{002}$ values for carbonaceous materials in the same sector show fully ordered graphite (ca. 500$^{\circ}C$) indicating amphibolite facies. This result with the concentration of mica ages of metasediments into the middle Jurassic, the presence of low-P/T thermal metamorphic zone (>500$^{\circ}C$) in the metasediments close to the Jurassic granite and the regional intrusion of Jurassic granites and their middle Jurassic intrusion and cooling ages may indicate the low-P/T regional thermal event during the early(\ulcorner)-middle Jurassic after main intermediate-P/T metamorphism which formed main mineral assemblage regionally in the study area. The regional thermal event failed, however, to reset the mineral assemblage of regional intermediate-P/T metamorphism except for narrow aureole (1-2 km) around Jurassic granite because e duration of thermal effect was relatively short by repid cooling of the Jurassic granite. In the middle part of the Jeungpyeong area, central Ogcheon metamorphic belt, muscovite and biotite K-Ar ages from 5 samples are 263-277 Ma and 241-249 Ma, respectively. An intermediate-P/T metamorphism is currently accepted to have occurred between 280 and 300 Ma. Therefore, the muscovite and biotite ages can be interpreted as cooling ages after Ml metamorphism indicating rapid cooling to ca 350$^{\circ}C$ between 280-300 Ma and 263-271 Ma, and biotite ages indicate slower cooling to ca. 300$^{\circ}C$ between 263-277 Ma and 241-249 Ma. However, more detail study is needed to confirm why the Permian to Triassic ages occur only in the middle Part of the Jeungpyeong area.a.

K-Ar Ages on Biotites of the Proterozoic Buncheon and Hongjesa Granitic Rocks in the northeastern Part of the Sobaegsan Massif (선(先)캠브리아기(紀) 분천(汾川) 및 홍제사화강암류(홍제사화강암류)의 흑운모(黑雲母)에 대(對)한 K-Ar 연대측정(年代測定))

  • Hong, Young Kook;Choi, Tae Yun
    • Economic and Environmental Geology
    • /
    • v.19 no.2
    • /
    • pp.147-151
    • /
    • 1986
  • K-Ar ages on biotites have been determined from the Proterozoic Buncheon and Hongjesa granitic rocks in comparison with the Rb-Sr whole-rock ages to investigate the ages of metamorphic events. The Rb-Sr whole-rock ages determinations on the Buncheon and Hongjesa granitoid rocks were previously reported as 2,100Ma and 1,700Ma, respectively. K-Ar ages on biotites separated from the studied rock have revealed three different age groups such as 1) 1,200~1,300Ma, 2) 600~700Ma and 3) 300~400Ma. The Rb-Sr whole-rock ages for the granitic rocks represent the time of emplacement, whereas the K-Ar ages on biotites generally indicate the time of metamorphism or alteration. The large discordance in the two age systems may not be explained as indicating the cooling period of the granitic batholiths. The K-Ar ages on biotites from the granitoid rocks might not be simply interpreted as the age of the last phase of metamorphism, since the granitic rocks had been undergone multistages of amphibolite facies-metamorphism in the Precambrian period. During the multistages of intermediate grade metamorphism, $^{40}Ar$-loss could be inevitably taken place as the metamorphic temperatures went up above the blocking temperature of biotite ($300{\pm}50^{\circ}C$). The results of the K-Ar dating on biotites from this study are probably minimum ages or hydrothermal alteration ages.

  • PDF

K-Ar biotite ages of pelitic schists in the Jeungpyeong-Deokpyeong area, central Ogcheon metamorphic belt, Korea (증평-덕평 지역 중부 옥천변성대에 분포하는 이질 편암의 K-Ar 흑운모 연대)

  • 조문섭;김인준;김현철;민경원;안중호;장미경개
    • The Journal of the Petrological Society of Korea
    • /
    • v.4 no.2
    • /
    • pp.178-184
    • /
    • 1995
  • The K-Ar ages of biotites, obtained from thirteen pelitic schists in the Jeungpyeong-Deokpyeong area, central Ogcheon metamorphic belt, range from 89 Ma to 213 Ma except for one specimen. These K-Ar ages systematically decrease as the distance between the analyzed specimen and the Jurassic or Creataceous granite decreases. The K-Ar ages of b~otites adjacent to the Jurassic and Cretaceous granites are 166 Ma and 89 Ma, respectively. Thus, the biotite ages are interpreted to result from the partial or complete resetting by thermal activities in association with the intrusion of Mesozoic granites, following the regional-thermal metamorphism at Late Triassic to Early Jurassic times.

  • PDF

A review on the K-Ar Ages of Quartz Schist in the Okdong Fault Zone: Robust Enough for the Evidence for the Precambrian Deposition of the Jangsan Formation? (옥동단층대 석영편암의 K-Ar 연령에 대한 검토: 장산층의 선캠브리아기 퇴적에 대한 확실한 증거로 활용 가능한가?)

  • Kim, Myoung Jung;Park, Kye-Hun
    • The Journal of the Petrological Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.67-72
    • /
    • 2018
  • The K-Ar ages of a sericite quartz schist in the lower Jangsan Formation along the Okdong fault zone reported by Yun (1983) have attracted attention again because of their potential to constrain the depositional timing of the Jangsan Formation. The oldest age of $562{\pm}2Ma$ among three reported K-Ar ages in the schist led to the claim that the depositional period of the lowermost Jangsan Formation in the Joseon Supergroup is late Neoproterozoic. Its depositional age is important for understanding the tectonic evolution of the Korean Peninsula including the formation and evolution histories of its sedimentary basins. Thus, the reliability and geological meaning of three K-Ar ages in the original paper (Yun, 1983) were revisited in the review. Quartz grains in the analyzed sample contain a considerable amount of excess Ar, and therefore it is inappropriate to use the ages as a basis for a depositional age constraint of the Jangsan Formation. The timing of mylonitization in the schist is recalculated as ~170 Ma.

K-Ar ages of the hydrothermal clay deposits and the surrounding igneous rocks in southwest Korea (한국 남서부의 열수점토광상과 주변암에 대한 K-Ar 연대 측정)

  • Kim In Joon;Nagao Keisuke
    • The Journal of the Petrological Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.58-70
    • /
    • 1992
  • From the K-Ar age determinations for the clay deposits and their surrounded rocks in southwest Korea, the ages of the ore formation in all clay deposits fall in very narrow range from 78.1 to 81.4 Ma. K-Ar ages of clay deposits are slightly younger than those of the Cretaceous volcanic rocks (Hwangsan Formation, 81.4 to 86.4 Ma) and are slightly older than those of the Cretaceous granitic rocks (77.1 to 81.5 Ma). These results indicate that clay deposits were formed with genetical relation to late Cretaceous felsic magmatism. Weolgagsan granite, which has been previously considered to be Cretaceous, is proved to be formed its age in Jurassic (140.9 and 144.8 Ma). The close relationships of K-Ar ages between the clay deposits and Cretaceous granitic rocks suggest that the clay deposits were formed during the hydrothermal alterations caused by the thermal effects (hydrothermal circulation) of the granitic intrusions rather than by the hydrothermal activities associated with volcanic activities.

  • PDF

K-Ar Muscovite Dating for Precambrian Granites in the Sangdong Area (상동지역(上東地域) 선캠브리아 화강암류(花崗巖類)의 K-Ar 백운모(白雲母) 연령측정(年齡測定))

  • Yun, Hyun Soo
    • Economic and Environmental Geology
    • /
    • v.24 no.1
    • /
    • pp.21-25
    • /
    • 1991
  • The studied Nonggeori and Naedeogri granites in the Sangdong area intruded into the Precambrian metasedimentary rocks of the Yulri Group. The Cambro-Ordovician Choseon Supergroup overlied unconformably upon the Yulri Group. Pegmatitic dykes injected into the Yulri Group and the granites, but not in the Choseon Supergroup. Field relationships suggest approximate ages of the intrusive rocks in the studied area belong to the Precambrian. Extremely pure concentrates of muscovites(40-80#) were obtained from the granites by conventional isodynamic magnetic separators. The contents of K and 40Ar in the muscovites show 8.60-8.78% and 98.52-99.11%, respectively. From the potassium contents of the muscovites and the approximate ages, the sample amounts for argon analyses are average of 0.00371gr. The K-Ar ages on the muscovites were revealed as Proterozoic ($1673{\pm}22{\sim}1802.5{\pm}17.5Ma$).

  • PDF

K-Ar Ages of Cretaceous Fossil Sites, Seoyuri, Hwasun, Southern Korea (화순 서유리의 백악기 화석산지에 대한 K-Ar 연대)

  • Kim, Cheong Bin;Kang, Seong Seung
    • Journal of the Korean earth science society
    • /
    • v.33 no.7
    • /
    • pp.618-626
    • /
    • 2012
  • The Cretaceous fossil sites of Seoyuri in Hwasun was designated as the Korean Natural Monument No. 487 in November 2007. It provides important resources for paleoenvironmental studies, including theropod trackways, plant fossils, mudcracks, ripple marks, and horizontal bedding. The Cretaceous sedimentary strata contain a wide variety of volcanic pebbles, 5-40 cm in diameter in the lower portion and are overlain by the Late Cretaceous Hwasun andesite. Whole rock absolute K-Ar age determinations were performed on six volcanic pebbles from the Cretaceous sedimentary strata and on two samples from the overlaying Hwasun andesite. These ages indicate that the rocks belong to the period between the Turonian of the late Cretaceous (91-70 Ma) and the Pliocene age of the early Cenozoic ($63.4{\pm}1.2$ and $62.1{\pm}1.2$ Ma). Thus, the K-Ar ages indicate that the maximum geological age of the dinosaur track-bearing sedimentary deposits is about ca. 70 Ma. Therefore, it suggests that the age is comparable to the formation ages of the dinosaur footprints-bearing deposits in Sado area of Yeosu (71-66Ma).

New Approach on the Extinction of Spreading at the Phoenix Ridge, Antarctica (남극 피닉스 해령 확장작용 소멸시기에 대한 새로운 고찰)

  • Choe Won Hie;Lee Jong Ik;Lee Mi Jung;Hur Soon Do;Jin Yaung Keun
    • The Journal of the Petrological Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.73-81
    • /
    • 2005
  • K-Ar ages have been determined for the submarine basalts dredged from the P2 and P3 segments of the Phoenix Ridge, Drake Passage, Antarctica, for better understanding on the extinction of seafloor spreading. At the P3 segment, the K-Ar ages of the rifted ridge basalts are 3.5-6.4 Ma, and those for the axial seamount basalts are 1.5-3.1 Ma. The K-Ar ages for the basalts at the rifted ridge and axial central high in the P2 segment are 2.1 and 1.4-1.9 Ma, respectively. We suggest that the extinction of seafloor spreading at the P3 and P2 segments occurred at 3.3 and 2.0 Ma, respectively, on the basis of ridge structure and formation time of basalts. This result favors a stepwise extinction model rather than a simultaneous one on the extinction of the Phoenix Ridge.

Microstructural Features and K-Ar Ages of Fault Gouges from Quaternary Faults along the Northern Yangsan Fault, SE Korea

  • Chang Oh Choo;Tae Woo Chang;Kounghoon Nam;Jong-Tae Kim;Chang-Ju Lee;Gyo-Cheol Jeong
    • The Journal of Engineering Geology
    • /
    • v.33 no.1
    • /
    • pp.121-136
    • /
    • 2023
  • Microstructural characterization, identification of mineral assemblages, and K-Ar age dating of fault gouges from five Quaternary fault sites segmented along the northern Yangsan Fault, SE Korea were performed to understand formation condition and multiple activity of faults. The mean and median sizes of particles of bulk gouges vary among the studied faults: 1.75 ㎛ and 1.43 ㎛ for the Danguri Fault, 1.94 ㎛ and 1.79 ㎛ for the Yukjae Fault, 5.57 ㎛ and 4.16 ㎛ for the Yugye Fault, and 5.55 ㎛ and 2.31 ㎛ for the Bogyeongsa Fault. Fault gouges contain abundant secondary minerals, including smectite, chlorite, illite, kaolinite, laumontite, and mordenite, which are found in association with quartz and feldspar. K-Ar dating of the fault gouges (both bulk samples and separate size fractions) yields ages ranging from 59.1 to 18.8 Ma, with bulk ages of 47.6 Ma for the Yukjae Fault, 59.1 Ma for the Ansim Fault, 39.4 Ma for the Yugye Fault, and 22.6 Ma for the Bogyeongsa Fault. The finer fractions generally have younger K-Ar ages compared with the coarser fractions, and the finest fraction (<0.2 ㎛) is the youngest for each fault. Hydrothermal alteration of the gouges is considered to have occurred under low-temperature (100~200℃) conditions during faulting. Microstructural features and clay mineral assemblages of fault gouges and brecciated rocks should be considered when interpreting fault events and reactivation, in addition to age dating of faulting.

Tectonic Implication of 40Ar/39Ar Hornblende and Muscovite Ages for Granitic Rocks in Southwestern Region of Ogcheon Belt, South Korea (옥천대 남서부지역에 분포하는 화강암류의$^{40}Ar/^{39}Ar$ 각섬석-백운모 연령에 대한 지구조적 의미)

  • 김용준;박재봉;박영석
    • The Journal of the Petrological Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.69-76
    • /
    • 1998
  • $^{40}Ar/^{39}Ar$ analytical data of hornblende and muscovite separates from granitic rocks in southwestern region of Ogcheon belt shows fellowing tectonic implication, $^{40}Ar/^{39}Ar$ data of 5 samples yield apparent age spectra and $^{37}Ar_{ca}/^{39}Ar_k$ and $^{38}Ar_{CI}/^{39}Ar_k$ plateaus for more than 60% of the $^{39}Ar$ release. Except for HN-100, the $^{36}Ar/^{40}Ar$ versus $^{39}Ar/^{40}Ar$ corelalation diagrams indicate the presence of one distint line. Muscovite of sample PKJ-44 yield flate apparent age plateau for > 60% of the $^{39}Ar_k$ release. In the high temperature steps, the $^{37}Ar_{ca}/^{39}Ar_k$ values are irregular with a correlative increase in $^{38}Ar_{CI}/^{39}Ar_k$, suggesting some Ca and CI rich phase, tapped between the silicate sheet is being argon degassed. The $^{40}Ar/^{39}Ar$ total gas age and the high temperature age of HN-100 is 918.2 Ma and 1360 Ma, respectively. The former affectted by recystallized age of Daebo Orogeny, and the latter indicated age of hornblende closure temperature for cooling stage of amphibole xenolith in granite gneiss. Three rock types of Kwangju granites show about 165 Ma hornblende and muscovite ages with some degassed argon at low temperature steps. These ages of 4 samples indicate also recrystallized age by Daebo Orogeny. In $^{40}Ar/^{39}Ar$ mineral age, Rb/Sr whole age and K/Ar mineral age, discordant ages of southwestern region of Ogcheon belt suggesting cooling rates approaching 3~4$^{\circ}C$/m. y. Such slow cooling rates can be produced by uplift rate of 100m/m.y. or slightly slower than isothem-migration rate derived from the hornblende samples. We conclude that the strongest Orogeny and igneous activity of southwestern region of Ogcheon belt are middle proterozoic era (about 1360 Ma) and middle Jurassic period (about 165 Ma).

  • PDF