• 제목/요약/키워드: Jurassic Granitic Rocks

검색결과 59건 처리시간 0.026초

충주(忠州)-월악산(月岳山)-제천(提川) 화강암류(花崗岩類)의 암석화학적(岩石化學的) 연구(硏究) (Petrochemistry of the Granitic Rocks in the Chungju, Wolaksan and Jecheon Granite Batholiths)

  • 김규한;신윤수
    • 자원환경지질
    • /
    • 제23권2호
    • /
    • pp.245-259
    • /
    • 1990
  • Petrochemical analyses of granitic rocks including trace element, REE and oxygen isotope were carried out to understand petrogenesis of plutonic rocks from the Chungju, Wolaksan and Jecheon granite batholiths, which might be related with tungsten-base metal-fluorite mineralization in the Hwanggangri metallogenic province. Different geochemical characteristics such as major and trace elements were found between Jurassic Daebo granitic rocks (Chungju, Jecheon, Wonju, and Boeun granitic rocks) and Cretaceous Bulgugsa granitic rocks (Wolaksan, Muamsa and Sokrisan granitic rocks). Cretaceous granitoids are characterized by high $SiO_2$and $K_2O$ contents and low $TiO_2$, $Al_2O_3$, MgO and CaO contents. They also have relatively high contents of trace elements(Zn, V, Co, Cr, Sr, and Ba) in comparison with the Jurassic granitoids. (Eu)/($Eu^*$) and $(La/Lu)_{CN}$ ratios of Jurassic plutons vary from 0.78 to 1.13 and from 26.02 to 30.5, respectively, while the ratios of Cretaceous ones range from 0.22 to 0.28 and from 4.42 to 14.2, respectively. The REE patterns of the Cretaceous and Jurassic granitic rocks have quite different Eu anomalies: large negative Eu anomaly in the former, and mild or absent Eu anomaly in the latter. The large Eu negative of Cretaceous granitic rocks are interpreted as a differentiated product of fractional crystallization of granitic magma deduced by Rayleigh fractionation model(Tsusue et al., 1987). Oxygen isotopic compositions of quartz for Daebo and Bulgugsa granitic rocks range from 9.98 to 10.51‰ and from 8.26 to 9.56‰, respectively. The Daebo granitic rocks enriched in $^{18}0$ suggest that the magma be undergone different partial melting processes from the Bulgugsa ones. Of the Bulgugsa granitoids, Wolaksan and Sokrisan mass have different contents of trace elements and ${\delta}\;^{18}0$ values of the silicate minerals, which indicate that they are not from the identical source of magma. Many mineral deposits are distributed in and/or near the Wolaksan and Muamsa granitic rocks, but a few mineral deposits are found in and near the Chungju and Jecheon granite batholiths. It might be depend on geochemisty of the related igneous rocks which have low contents of Ba, Sr, Co, V, Cr, Ni, Zn and high contents of Nb and Y, and on lithology of country rocks such as cabonate and noncarbonate rocks.

  • PDF

금산지역에 분포하는 화강암류의 암석지구화학 (Petrogeochemistry of Granitic Rocks Distributed in the Geumsan District, Korea)

  • 진호일;민경원;전효택;박영석
    • 자원환경지질
    • /
    • 제28권2호
    • /
    • pp.123-137
    • /
    • 1995
  • The Mesozoic Geumsan granitic rocks of various composition are distributed in the Geumsan district, the central part of the Ogcheon Fold Belt. About 40 ore deposits of $CaF_2{\pm}Au{\pm}Ag{\pm}Cu{\pm}Pb{\pm}Zn$ are widely distributed in this district and are believed to be genetically related to the granitic rocks. Based on their petrography and geochemistry, the granitic rocks in this district can be classified into two groups ; the Group I( equigranular leucocratic granite, porphyritic biotite granite, porphyritic pink-feldspar granite, seriate leucocratic granite) and the Group II(seriate pinkfeldspar granite, equigranular alkali-feldspar granite, equigranular pink-feldspar granite, miarolitic pink-feldspar granite, equigranular biotite granite). Interpreted from their isotopic dating data and geochemical characteristics, the Group I and the Group II are inferred to be emplaced during the Jurassic(~184Ma), and the Cretaceous to the early Tertiary period(~59Ma), respectively. Both Group I and Group II generally belong to magnetite-series granitoids. The Cretaceous granitic rocks of Group II are more highly evolved than those of the Jurassic Group I. The Rb-Sr variation diagram suggests that the granitic rocks of the Jurassic Group I and of the Cretaceous Group II be evolved mainly during the processes of fractional crystallization and partial melting, respectively.

  • PDF

부평 은광산 지역의 유문암질암의 화강암류의 K-Ar연령과 Nd, Sr 동위원소 (Nd and Sr Isotopes and K-Ar Ages of the Granitic and Rhyolitic Rocks from the Bupyeong Silver Mine Area)

  • 김규한;타나카 츠요시;나가오카 케이스케
    • 자원환경지질
    • /
    • 제31권2호
    • /
    • pp.149-158
    • /
    • 1998
  • Volcanic rocks including rhyolitic tuff, rhyolite and welded tuff in the Bupyeong silver mine area form a topographic circular structure known as a resurgent caldera. Granitic rocks are emplaced inside and outside area of the circular structure. K-Ar dating and Nd-Sr isotope studies were carried out to invesitigate the origin and petrogenetic evolution of the rhyolitic and granitic magma in the Bupeong silver mine area. Whole rock K-Ar age ranges from 208 to 131 Ma for rhyolitic rocks. Radiometric ages for the granitic rocks are 167.6 Ma for pink feldspar biotite granite from inside granitic pluton of the circular volcanic body, 178.8 Ma for the Kimpo hornblende biotite granite and 111.8 Ma for the Songdo foliated granite from outside granitic plutons of the volcanic body. The radiometric age data indicates that the volcanic activities which are partly overlapped by granite plutonic activities in the Bupyeong mine area had recorded early Jurassic and early Cretaceous in age. Initial Sr and Nd isotopic ratios of the rhyolitic rocks ($^{87}Sr/^{86}Sr$=0.710~0.719 and $^{143}Nd/^{144}Nd$=0.5115~0.5118) are similar to those of granitic rocks ($^{87}Sr/^{86}Sr$=0.709~0.716 and $^{143}Nd/^{144}Nd$=0.5115~0.5116) from inside granite stock. This means that similar source materials of felsic magma responsibles for the Bupyeong volcanic rocks and inside plutonic rocks. Based on the Nd and Sr isotopic compositions, rhyolitic and granitic magmas in the Bupyeong area originated from the partial melting of the old continental crust which has Nd model age ranging from 1500 to 2900 Ma. This is analogous to those of the other Jurassic granitoids in South Korea.

  • PDF

남한의 일부 중생대 화강암류의 지구화학적 연구 (Geochemical Study of Some Mesozoic Granitic Rocks in South Korea)

  • 김규한
    • 자원환경지질
    • /
    • 제25권4호
    • /
    • pp.435-446
    • /
    • 1992
  • REE, major and trace elements analyses of the Jurassic Daebo granite and Cretaceous Bulguksa granite were carried out to interpet their petrogenesis and relationships between petrogenesis and tectonics. Analytical results are summarized as follows. (1) $SiO_2$ content of the Bulguksa granite (aver. 74.6%) are significantly higher than those of the Daebo granite (aver. 68.1%). Major elements of $TiO_2$, $Al_2O_3$, $P_2O_5$, CaO, MgO, Total FeO, and trace elements of Co, V and Sr are negatively correlated with $SiO_2$. Incompatible elements such as Ba, Sr, Y, Zr and HREE are contained differently in the Bulguksa granites distributed in between Okchon folded belt and Kyongsang sedimentary basin. (2) Trace element abundances show a good discrimination between two goups of granitic rocks. Ba, Sr and V are enriched in Daebo granites, while Zn and Cr are depleted in them. (3) Jurassic granites have quite different Eu anomalies and REE patterns from those of Cretaceous granites: Large negative Eu anomaly in the former and mild or absent Eu anomaly in the latter. The large Eu negative of Cretaceous granitic rocks are interpreted as a differentiated product of fractional crystallization of granitic magma from the upper mantle. Meanwhile, the Daebo plutonic rocks was resulted from the partial melting of subcrustal material or crustal contamination during ascending granitic magma from the mantle. Senario of igneous activities of Mesozoic age in South Korea was proposed based on Kula-Pacific ridge subduction model.

  • PDF

경기육괴 북부 광덕산 일대에 분포하는 쥐라기 고알루미나 화강암질암의 성인에 대한 지화학적 연구 (Geochemical Studies on the Petrogenesis of Jurassic Peraluminaous Granitic Rocks in the area of Gwangdeoksan in the Northern Gyeonggi Massif)

  • 한충희;전혜수;박영록
    • 광물과 암석
    • /
    • 제33권4호
    • /
    • pp.325-337
    • /
    • 2020
  • 경기육괴 북부 화천군과 철원군 경계부의 광덕산 일대에 분포하는 쥐라기 화강암은 복운모화강암, 함석류석복운모화강암, 운모화강암, 반상흑운모화강암으로 이루어져 있다. 이 암석들은 서브알칼리 계열 중 칼크-알칼리 계열에 해당하며, Al 포화지수를 이용한 A/CKN vs. A/KN 다이어그램에서 고알루미나질 영역에 도시된다. 암석기재학적·지화학적 자료는 연구지역에서 가장 후기에 관입한 것으로 알려진 반상흑운모화강암은 복운모화강암, 함석류석복운모화강암 및 운모화강암과는 별개의 모그마로부터 기원하였음을 지시한다. 이들 화강암질암을 형성한 마그마의 근원암의 성질을 알아보기 위해 Rb/Sr vs. Rb/Ba 다이아그램과 Al2O3/TiO2 vs. CaO/Na2O 다이어그램에 도시한 결과, 반상흑운모화강암은 복운모화강암, 함석류석복운모화강암, 운모화강암 보다 이질 성분을 덜 함유하는 근원암으로부터 유래하였음을 알 수 있다. 스파이더 다이어그램에서 친석원소인 Cs, Rb, Ba의 값이 부화되어 나타나고, 고장력 원소인 Nb, P, Ti의 값이 결핍된 값의 지화학적 특성을 보이는 것으로 보아, 광덕산 일대에 분포하는 쥐라기 고알루미나질 화강암질암은 섭입대 환경에서 형성되었으며, 전암 저어콘 포화지온계로부터 692-795℃ 온도 조건에서 용융되었음을 알 수 있다.

금산지역 형석광화작용과 관련된 화강암질암의 지구화학적 자료 해석 (Geochemical Data Analysis of the Granitic Rocks Potentially Related to Fluorite Mineralization in the Geumsan District)

  • 진호일;전효택;민경원
    • 자원환경지질
    • /
    • 제28권4호
    • /
    • pp.369-379
    • /
    • 1995
  • About forty ore deposits of $CaF_2{\pm}Au{\pm}Ag{\pm}Cu{\pm}Pb{\pm}Zn$ are widely distributed in the Geumsan district and are believed to be genetically related to the Mesozoic Geumsan granitic rocks. Based on their petrogeochemistry and isotopic dating data, the granitic rocks in this district can be classified into two groups ; the Jurassic granitic rocks(equigranular leucocratic granite, porphyritic biotite granite, porphyritic pink-feldspar granite, seriate leucocratic granite) and the Cretaceous granitic rocks(seriate pink-feldspar granite, equigranular alkali-feldspar granite, equigranular pink-feldspar granite, miarolitic pink-feldspar granite, equigranular biotite granite). Spatial distribution of fluorite ore deposits, fluorine contents of granitic rocks and fracture patterns in this district suggest that three granitic rocks(equigranular biotite granite, equigranular pink-feldspar granite, miarolitic pink-feldspar granite) of the Cretaceous period be genetically related to the fluorite mineralization. In these fluorite-related granitic rocks, fluorine is most highly correlated with Cs(correlation coefficient(r)>0.9), and also highly with MnO, U, Sm, Yb, Lu, Zn, Y, Li(r>0.7). Statistically the variation of fluorine in the fluorite-related granitic rocks can be explained in terros of only three elements, such as Lu, CaO and Cs, and the fluorite-related granitic rocks can be discriminated from the fluorite-nonrelated granitic rocks by a linear functional equation of La, Ce, Cs and F($Z_{Ust}=-1.38341-0.00231F-0.19878Ce+0.38169La+0.54720Cs$). Also, equigranular alkali-feldspar granite is classified into the fluorite-related granitic rocks by means of the linear functional equation($Z_{Ust}$).

  • PDF

남한의 중생대 화강암중의 가스성분과 유체포유물 연구 (Gas Composition and Fluid Inclusion Studies of the Mesozoic Granitic Rocks in South Korea)

  • 김규한;박성숙;류이치 스기사키
    • 자원환경지질
    • /
    • 제29권4호
    • /
    • pp.455-470
    • /
    • 1996
  • Mesozoic granitic rocks in the Korean peninsula contain $H_2$, $CH_4$, CO and rare $C_2H_6$. The Jurassic Daebo granites mostly belonging to the ilmenite series are predominated in $CH_4$. Meanwhile, the magnetite series Bulguksa granites of Cretaceous age in the Kyongsang basin and Okchon zone are relatively enriched in $CO_2$. The older granites have a wide variation of $CH_4/CO_2$ ratios (0.1~1.0) compared to those of the younger ones (0.1~0.5). This characteristics of gas compositions suggest that the Jurassic granites are principally derived from the partial melting of metasedimentary rocks with much reducing materials in the lower continental crust. On the other hand, the mantle source granitic magmas might be responsible for the Cretaceous granites characterized by dominant and homogeneous $CO_2$ gas compositions. Liquid-vapor homogenization temperatures of quartz in the Jurassic and Cretaceous granites range from 108 to $539^{\circ}C$ (av. $324^{\circ}C$) and 160 to $556^{\circ}C$ (av. $358^{\circ}C$), respectively. Their salinities are between 0.2 and 16.3 wt.% NaCl for the Jurassic granites and 0.4, and 15.6 wt.% NaCl for the Cretaceous ones. Fluid inclusions with solid daughter minerals lying on or near the halite equilibrium curve represent inclusion fluids from the magmatic stage. The type I and II fluid inclusions which are plotted apart from the equilibrium curve are considered to trap in late hydrothermal alteration stage with a increasing influx of metedric water.

  • PDF

석조문화재의 암석에 관한 지질학적 조사 연구 (I)-원주시, 원주군, 횡성군 및 홍천군 지역을 중심으로 (Geological Study on the Rocks of the Stone-Monuments-at the around the weonju City, Weonju-gun, Hwoengseong-gun and Hongcheon-gun)

  • 이상헌
    • 보존과학연구
    • /
    • 통권13호
    • /
    • pp.14-36
    • /
    • 1992
  • The investigation has been made on the rocks consisting the pagoda(12), Buddhist Statues(9) Buldaejwa and cakra(2, rewpectively), stele(5), and Flagpole wupport and stupa(6) which are stood in Weonju city, Weonju-gun, Hwoengseong-gun and Hongcheon-gun, Kangweondo. These rock-monuments range mostly in age from late Shilla Kingdom to middle Korye Kingdom. The geology around this region is mainly composed of Precambrian metamorphic rocks and mesozoic granitic rocks. The granitic rocks are largely divided into Jurassic and cretaceous ones which are slightly different in rock phase. The main rock phase consisting the monumentsare are coarse biotite granite with minor amount of hornblende in Jurassic age. Variation in rock phase is abserved even in part of the stone used in the monuments. Inclusions composed of biotite and hornblende, porphyritic texture with microcline phenocryst, igneous lineation and exfoliation according to weathering are observable in all rocks in these monuments. In the case of stele whose a body and a capstone is remained, one is composed of black slate and the other white limestone. But the turtle shaped pedestal is constituted of coarse biotite granite. These stone-monuments are strongly weathered and exfoliated out about 1∼2mm.In case of exfoliated weathering along igneous lineation, some are taken off about 3∼5mm thick. In some monuments, the degree of weathering is somewhat different according to position, grade of sculpture, and biological activity.

  • PDF

A Study on Mineralization of the Cheonabo Gold Mine

  • Yoo, Jae shin
    • 동굴
    • /
    • 제42권2호
    • /
    • pp.33-40
    • /
    • 1995
  • The Cheonbo gold mine is located approximately 8km northeast of Cheonan in southern part of Korean peninsula. The Cheonbo gold deposits are composed of parallel-filling quartz veins that are associated wi th the Cheonan granite which intruded the surrounding Precombrian metamorphic country rocks. Rb/Sr date of the granitic intrusion is 170${\pm}$0. 3m.y., suggesting a middle Jurassic age for gold mineralization.

  • PDF