• Title/Summary/Keyword: Jupiter

Search Result 89, Processing Time 0.036 seconds

Implementation of Hypervisor for Virtualizing uC/OS-II Real Time Kernel (uC/OS-II 실시간 커널의 가상화를 위한 하이퍼바이저 구현)

  • Shin, Dong-Ha;Kim, Ji-Yeon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.5
    • /
    • pp.103-112
    • /
    • 2007
  • In this paper, we implement a hypervisor that runs multiple uC/OS-II real-time kernels on one microprocessor. The hypervisor virtualizes microprocessor and memory that are main resources managed by uC/OS-II kernel. Microprocessor is virtualized by controlling interrupts that uC/OS-II real-time kernel handles and memory is virtualized by partitioning physical memory. The hypervisor consists of three components: interrupt control routines that virtualize timer interrupt and software interrupt, a startup code that initializes the hypervisor and uC/OS-II kernels, and an API that provides communication between two kernels. The original uC/OS-II kernel needs to be modified slightly in source-code level to run on the hypervisor. We performed a real-time test and an independent computation test on Jupiter 32-bit EISC microprocessor and showed that the virtualized kernels run without problem. The result of our research can reduce the hardware cost, the system space and weight, and system power consumption when the hypervisor is applied in embedded applications that require many embedded microprocessors.

  • PDF

A Study on the Application of Classic Astrology to Predict Occupational Integrity (직업적성 예측을 위한 고전 점성학 활용방안)

  • Do-Yeon Kim;Ki-Seung Kim
    • Industry Promotion Research
    • /
    • v.8 no.4
    • /
    • pp.221-227
    • /
    • 2023
  • This study is a study to analyze Nativity's occupational aptitude by examining the functions and structures of the planets that make up the Nativity birth chart of Classic Astrology. If the occupation that appears in the birth chart is viewed as an individual's natural occupation, it is analyzed through the strength and weakness of the sign and planets, and the aspect (relationship with the planet). In Classic Astrology's nativity birth chart, there are three major planets when judging occupations: Venus (♀). Mars (♂). It was thought to be determined by Mercury (☿). However, in order to meet the diversity of jobs required in today's highly developed knowledge and information society, there are some shortcomings, so Saturn (♄), Jupiter (♃), Sun (☉), Moon (☽) was added to apply the aptitude for the job. Thus, the native's ASC vocational aptitude could be applied more diversely and broadly based on the relationship between planets and their aspects. As a result, Venus (♀. Venus) means enjoying artistic work that people think is beautiful and making it a pleasure in life, while Mars (♂) means work that requires physical strength and strength, such as working days. Mercury (☿) means using knowledge and brains, and the Sun (☉) plays a role in giving authority to jobs and talents. The Moon (☽) helps the native gain people's trust in his or her profession and talents, Jupiter (♃) helps the native to revive his or her profession and talents through faith, sincerity, fairness, and generosity, and Saturn (♄) can appear as an obstacle that blocks career and talent due to greed, sadness, poverty, etc. As a result of the study, it was found that the native's occupations vary depending on the strengths and weaknesses of the planets and their aspect relationships.

Four Micron Polar Continuum of Jupiter

  • Kim, Sang-J;Kim, Yong-H.;Maillard, Jean-Pierre;Caldwell, John;Geballe, Tom;Bjoraker, Gordon
    • Bulletin of the Korean Space Science Society
    • /
    • 1994.04a
    • /
    • pp.18-18
    • /
    • 1994
  • No Abstract. See Full-text

  • PDF

Discussion on the Necessity of the Study on the Principle of 'How to Mark an Era in Almanac Method of Tiāntǐlì(天體曆)' Formed until Han dynasty (한대(漢代) 이전에 형성된 천체력(天體曆) 기년(紀年) 원리 고찰의 필요성에 대한 소론(小論))

  • Seo, Jeong-Hwa
    • (The)Study of the Eastern Classic
    • /
    • no.72
    • /
    • pp.365-400
    • /
    • 2018
  • The signs of $G{\bar{a}}nzh{\bar{i}}$(干支: the sexagesimal calendar system) almanac, which marked each year, month, day and time with 60 ordinal number marks made by combining 10 $Ti{\bar{a}}ng{\bar{a}}ns$(天干: the decimal notation to mark date) and 12 $D{\grave{i}}zh{\bar{i}}s$(地支 : the duodecimal notation to mark date), were used not only as the sign of the factors affecting the occurrence of a disease and treatment in the area of traditional oriental medicine, but also as the indicator of prejudging fortunes in different areas of future prediction techniques.(for instance, astrology, the theory of divination based on topography, four pillars of destiny and etc.) While theories of many future predictive technologies with this $G{\bar{a}}nzh{\bar{i}}$(干支) almanac signs as the standard had been established in many ways by Han dynasty, it is difficult to find almanac discussion later on the fundamental theory of 'how it works like that'. As for the method to mark the era of $Ti{\bar{a}}nt{\check{i}}l{\grave{i}}$(天體曆: a calendar made with the sidereal period of Jupiter and the Sun), which determines the name of a year depending on where $Su{\grave{i}}x{\bar{i}}ng$(歲星: Jupiter) is among the '12 positions of zodiac', there are three main ways of $$Su{\grave{i}}x{\bar{i}}ng-J{\grave{i}}ni{\acute{a}}nf{\check{a}}$$(歲星紀年法: the way to mark an era by the location of Jupiter on the celestial sphere), $$T{\grave{a}}isu{\grave{i}}-J{\grave{i}}ni{\acute{a}}nf{\check{a}}$$ (太歲紀年法: the way to mark an era by the location facing the location of Jupiter on the celestial sphere) and $$G{\bar{a}}nzh{\bar{i}}-J{\grave{i}}ni{\acute{a}}nf{\check{a}}$$(干支紀年法: the way to mark an era with Ganzhi marks). Regarding $$G{\bar{a}}nzh{\bar{i}}-J{\grave{i}}ni{\acute{a}}nf{\check{a}}$$(干支紀年法), which is actually the same way to mark an era as $$T{\grave{a}}isu{\grave{i}}-J{\grave{i}}ni{\acute{a}}nf{\check{a}}$$(太歲紀年法) with the only difference in the name, there are more than three ways, and one of them has continued to be used in China, Korea and so on since Han dynasty. The name of year of $G{\bar{a}}nzh{\bar{i}}$(干支) this year, 2018, has become $W{\grave{u}}-X{\bar{u}}$(戊戌) just by 'accident'. Therefore, in this discussion, the need to realize this situation was emphasized in different areas of traditional techniques of future prediction in which distinct theories have been established with the $G{\bar{a}}nzh{\bar{i}}$(干支) mark of year, month, day and time. Because of the 1 sidereal period of Jupiter, which is a little bit shorter than 12 years, once about one thousand years, 'the location of Jupiter on the zodiac' and 'the name of a year of 12 $D{\grave{i}}zh{\bar{i}}s$(地支) marks' accord with each other just for about 85 years, and it has been verified that recent dozens of years are the very period. In addition, appropriate methods of observing the the twenty-eight lunar mansions were elucidated. As $G{\bar{a}}nzh{\bar{i}}$(干支) almanac is related to the theoretical foundation of traditional medical practice as well as various techniques of future prediction, in-depth study on the fundamental theory of ancient $Ti{\bar{a}}nt{\check{i}}l{\grave{i}}$(天體曆) cannot be neglected for the succession and development of traditional oriental study and culture, too.

부호이론의 개념 길쌈부호편

  • 이만영
    • The Magazine of the IEIE
    • /
    • v.11 no.3
    • /
    • pp.47-58
    • /
    • 1984
  • 본지 2, 3월호에서 구술한 블록부호(선형부호 및 순회부호)에 이어 이번 호에서는 대합부호, 즉 길쌈부호(convolutional code)에 대해 기술하고자 한다. 길쌈부호는 그 부호법 중 역차 및 최근부호에 있어 그 구조적 표현이 대수학적(algebraic)이라기 보다는 오히려 위상학적(topological)이라는 점에서 주목할만한 특징을 지니고 있다. 길쌈부호를 응용한 예로는 1977년 NASA에 실시한 Voyager 우주탐사계획을 들 수 있다. 화성(Mars), 목성(Jupiter) 및 토성(Saturn) 등에서 일연의 과학 data 수집을 목적으로 했던 이 계획은 NASA소관 California공대 JPL연구소에서 개발한, 기억소자가 6단인(3, 1) 길쌈부호의 CODEC을 사용하였다.

  • PDF

Evolution of cometary dust particles to the inner solar system: Initial conditions, mutual collision and final sinks

  • Yang, Hongu;Ishiguro, Masateru
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.48.3-49
    • /
    • 2017
  • Interplanetary space of the solar system contains a large number of dust particles, referred to as Interplanetary Dust Particles (IDPs) cloud complex. They are observable through meteors and zodiacal lights. The relative contribution of possible sources to the IDPs cloud complex was an controversial topic, however, recent research (Yang & Ishiguro, 2015 and references therein) suggested a dominance of cometary origin. In this study, we numerically investigated the orbital evolution of cometary dust particles, with special concerns on different evolutionary tracks and its consequences according to initial orbits, size and particle shape. The effect of dust particle density and initial size-frequency distribution (SFD) were not decisive in total cloud complex mass and mass supply rate, when these physical quantities are confined by observed zodiacal light brightness and dust particle SFD at 1 au. We noticed that, if we assume the existence of fluffy aggregates discovered in the Earth's stratosphere and the coma of 67P/Churyumov-Gerasimenko, the required mass supply rate decreases significantly. We also found out that close encounters with planets (mostly Jupiter) are the dominating factor of the orbital evolution of dust particles, as the result, the lifetime of cometary dust particles are shorter than Poynting-Robertson lifetime (around 250 thousand years). As another consequence of severe close encounters, only a small fraction of cometary dust particles can be transferred into the orbit < 1 au. This effect is significant for large size particles of ${\beta}$ < 0.01. The exceptional cases are dust particles ejected from 2P/Encke and active asteroids. Because they rarely encounter with Jupiter, most dust particles ejected from those objects are governed by Poynting-Robertson effect and well transferred into the orbits of small semimajor axis. In consideration of the above effects, we directly estimated probability of mutual collisions between dust particles and concluded that mutual collisions in the IDPs cloud complex is mostly ignorable, except for the case of large sized particles from active asteroids.

  • PDF