• Title/Summary/Keyword: Jupiter

Search Result 89, Processing Time 0.023 seconds

STUDY OF THE EVOLUTION OF SL-9 IMPACT SITES ON JUPITER WITH THE KYUNGHEE UNIVERSITY 30 INCH TELESCOPE (경희대학교 망원경을 이용한 SL-9의 목성 충돌 후 충돌 흔적 진화 관측 연구)

  • Son, D. H.;Song, Y. M.;Lee, S. G.;Jin, H.;Kim, K.-S.;Kim, S. J.
    • Journal of Astronomy and Space Sciences
    • /
    • v.12 no.2
    • /
    • pp.204-215
    • /
    • 1995
  • We observed SL-9 impact sites on Jupiter with a CCD and a R filter on the KyungHee University 30-inch telescope between July 17 and September 3, 1994. We identified impact sites of A, C, E, G, H, K, L, Q1, W and G-group, We calculated the moving velocity relative to System II and rotation period of the G, L sites to be from -8.0 to 8.8m/s, and $9^h55^m39.4^s\pm34^s$, respectively. The diameters of G and L sites in our first observation were $1.95\times10^4km,\;and\;2.20\times10^4km$, respectively. In particular, we investigated the evolution of the impact sites by calculating the diffusing rates of the impact clouds.

  • PDF

Polarimetry of solar system small bodies using the Seoul National University 61cm telescope and TRIPOL

  • Jin, Sunho;Ishiguro, Masateru;Kwon, Yuna Grace;Geem, Jooyeon;Bach, Yoonsoo P.;Seo, Jinguk;Sasago, Hiroshi;Sato, Shuji
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.64.2-64.2
    • /
    • 2019
  • It is known that lights scattered by comets and asteroids are partially polarized. From polarimetric observations of those objects, we can investigate physical properties, such as albedos, sizes of cometary dust particles and regolith of asteroids. Since the polarization degrees of those objects highly depend on their phase angles (Sun-object-observer's angles), long-term monitoring observations are required. Moreover, comets show unforeseeable activations (i.e., outbursts) which need follow-up observations to understand the mechanism. In order to realize such monitoring and transient observations, we installed the Triple-Range Imager and POLarimeter (TRIPOL) on the 61cm telescope of Seoul National University (Hereafter, SNU) Gwanak campus. With this combination, we can obtain g', r', i' bands photopolarimetric images simultaneously with $8.0^{\prime}{\times}8.0^{\prime}$ field of view and pixel resolution of 0.94" pixel-1. Here, we make a presentation regarding the photometric and polarimetric performances of TRIPOL on the SNU 61cm telescope. In addition, we introduce initial polarimetric results of asteroid and comets with the instruments. First, we determine the limiting magnitudes (defined as magnitudes for S/N=5) of $15.17{\pm}0.06$ (g'-band), $15.68{\pm}0.01$ (r'-band), $16.24{\pm}0.03$ (I'-band), respectively, with total 240-seconds exposure (four 60-seconds exposure images, each was taken at different rotation angle for the half-wave plate). Second, we found that the instrumental polarization is negligibly small, ($-0.32{\pm}0.04%$ in the g', $-0.36{\pm}0.05%$ in the r' and $-0.21{\pm}0.04%$ in the i'-bands), while the polarization efficiencies are large enough to maximize the performance (i.e., $97.52{\pm}0.03%$ in the g', $98.83{\pm}0.02%$ in the r' and $99.15{\pm}0.02%$ in the i'-bands). With the instruments, we made observations of three Jupiter-family comets, 21P/Giacobini-Zinner, 38P/Stephan-Oterma, and 46P/Wirtanen and plan to observe one near-Earth asteroid, (433) Eros, on a trial basis. Especially for comets, we discriminate signals from dust and gas to eliminate gas contamination, which are known to change observed degree of linear polarization, using multi-band images. We confirm that the phase angle dependency of these comets are consistent with previous observations, probably because polarimetric property of Jupiter-family comets are broadly homogeneous unlike asteroids. We will also describe future observation plans using TRIPOL and SNU 61cm telescope.

  • PDF

AKARI NEAR-INFRARED SPECTROSCOPIC SURVEY FOR COMETARY VOLATILES

  • Ootsubo, T.;Kawakita, H.;Kobayashi, H.;Usui, F.;AKARI SOSOS team, AKARI SOSOS team
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.161-164
    • /
    • 2012
  • We performed a spectroscopic survey for cometary volatiles with the Infrared Camera onboard the Japanese infrared satellite AKARI. The observations were carried out in the near-infrared wavelength range in the period from 2008 June to 2010 January. In this paper, we summarize the observations and results of the AKARI survey for the mixing ratios of major volatiles in comets. We derived the $2.5-5{\mu}m$ spectra of 18 comets including both Oort cloud comets and Jupiter-family comets. Prominent emission bands in the observed spectra are the fundamental vibrational bands of water ($H_2O$) at $2.7{\mu}m$ and carbon dioxide ($CO_2$) at $4.3{\mu}m$. The fundamental vibrational band of carbon monoxide (CO) at $4.7{\mu}m$ and the broad emission feature probably related to C-H bearing molecules can also be recognized around the $3.4-3.5{\mu}m$ region in some comets. We detect $CO_2$ in 17 out of 18 comets, and derived gas production rate ratios of $CO_2$ with respect to $H_2O$ in 17 comets. We detect a reliable CO emission band only in three of the comets. Our data set provides the largest homogeneous database of $CO_2/H_2O$ ratios in comets obtained so far.

Design and Fabrication of an NIR Grism Si Optical Area Sensor Spectrometer with In-band Reference Wavelength (대역 내 기준 파장을 갖는 근적외선 그리즘 실리콘 광 면 센서 분광기 설계 및 제작)

  • Song, Jae-Won
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.28-34
    • /
    • 2017
  • An NIR grism Si optical area sensor spectrometer with in-band reference wavelength is designed and fabricated. It is composed of a transmission type diffraction grating (spatial density 300 line/mm), a rectangular N-BK7 prism (apex angle 30 degree), NIR filter(cutoff wavelength 720 nm), an imaging convex lens(focal length 50 mm F1.8) and an IR modified DSLR camera (Canon EOS40D) of Si optical area sensor ($3,888{\times}2,592$ pixels, pixel size $5.710{\mu}m$). "In-band reference wavelength function" is implemented using non-dispersive 0th diffraction order optical beam. The NIR grism spectrometer is tested in a laboratory using a halogen lamp and a Neon lamp. And the spectrometer is used in an astronomy field for obtaining the planet Jupiter NIR spectrum. In-band reference wavelength i.e. un-deviation wavelength is 846 nm, an wavelength resolution is 0.3027 nm/pixel, an wavelength resolving power is 2,794 and an wavelength range is 650~1,000 nm.

SEARCH FOR AN OI EMISSION AT $1304{\AA}$ IN JOVIAN AUROAL SPECTRA

  • Kim, Sang-J.;Kim, Yong-H.
    • Publications of The Korean Astronomical Society
    • /
    • v.10 no.1
    • /
    • pp.127-134
    • /
    • 1995
  • Recent discovery of an Io-related feature in Jupiter's auroral regions prompted us to search for an or multiplet at $1304{\AA}$ in IUE aurora spectra. In three independent IUE spectra taken on January 18, 1981, we found an emission structure at $1304{\AA}$, with a signal-to-noise of about three. If the structure is due to the OI emission, then it is a direct evidence of oxygen ion precipitation, which may originate from Io and Io torus. The emission rates of the $H_2$ band systems and the or multiplet are about 50 kR and 150 R, respectively. We have constructed high resolution model spectra with the estimated emission rates of $H_2$, OI and SI for the Goddard High Resolution Spectrograph (GHRS) onboard the Hubble Space Telescope. The model spectra clearly show the or and SI mulitplets separated from crowded $H_2$ Lyman and Werner band lines, and therefore it is promising to detect the OI and SI multiplets with the GHRS. Given the possibility that the lo-related feature may be caused by ion precipitations from the Io flux tube, it is likely that the OI emission may be detected in the footprint area of the IO flux tube.

  • PDF

SATELLITE ATTITUDE SENSING MODEL AND THEIR S/W DEVELOPMENT (인공위성 자세감지 모델과 그 S/W 개발)

  • 김영신;안웅영;김천휘
    • Journal of Astronomy and Space Sciences
    • /
    • v.16 no.1
    • /
    • pp.69-78
    • /
    • 1999
  • We have developed an attitude sensing S/W system, one of modules of Mission Analysis System(MAS), which simulates attitude sensing data as almost the same as the real sensor of a satellite in orbit. When attitude elements($alpha,delta$) of a satellite and positions of Earth, Moon, and Sun are given, the S/W system calculates look angles and dihedral angles of each celestial bodies relative to the rotations axis of the satellite. It consists of two sub-modules : One is ephemeris service module which consider the perturbations of four planets(Venus, Mars, Jupiter, Saturn) for positions of Sun and Moon and 4 $\times$4 earth gravitational potential terms for a satellite's position. The other is attitude simulation module which generates attitude sensing data. Varying the rotational axis of a satellite and it's orbital elements, we simulated the generating attitude sensing data with this S/W system and discussed their results.

  • PDF

Development of Precise Lunar Orbit Propagator and Lunar Polar Orbiter's Lifetime Analysis

  • Song, Young-Joo;Park, Sang-Young;Kim, Hae-Dong;Sim, Eun-Sup
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.2
    • /
    • pp.97-106
    • /
    • 2010
  • To prepare for a Korean lunar orbiter mission, a precise lunar orbit propagator; Yonsei precise lunar orbit propagator (YSPLOP) is developed. In the propagator, accelerations due to the Moon's non-spherical gravity, the point masses of the Earth, Moon, Sun, Mars, Jupiter and also, solar radiation pressures can be included. The developed propagator's performance is validated and propagation errors between YSPOLP and STK/Astrogator are found to have about maximum 4-m, in along-track direction during 30 days (Earth's time) of propagation. Also, it is found that the lifetime of a lunar polar orbiter is strongly affected by the different degrees and orders of the lunar gravity model, by a third body's gravitational attractions (especially the Earth), and by the different orbital inclinations. The reliable lifetime of circular lunar polar orbiter at about 100 km altitude is estimated to have about 160 days (Earth's time). However, to estimate the reasonable lifetime of circular lunar polar orbiter at about 100 km altitude, it is strongly recommended to consider at least $50\;{\times}\;50$ degrees and orders of the lunar gravity field. The results provided in this paper are expected to make further progress in the design fields of Korea's lunar orbiter missions.

Monitoring the 2007 Florida east coast Karenia brevis (Dinophyceae) red tide and neurotoxic shellfish poisoning (NSP) event

  • Wolny, Jennifer L.;Scott, Paula S.;Tustison, Jacob;Brooks, Christopher R.
    • ALGAE
    • /
    • v.30 no.1
    • /
    • pp.49-58
    • /
    • 2015
  • In September 2007, reports of respiratory irritation and fish kills were received by the Florida Fish and Wildlife Conservation Commission (FWC) from the Jacksonville, Florida area. Water samples collected in this area indicated a bloom of Karenia brevis, the dinoflagellate that produces brevetoxin, which can cause neurotoxic shellfish poisoning. For the next four months, K. brevis was found along approximately 400 km of coastal and Intracoastal waterways from Jacksonville to Jupiter Inlet. This event represents the longest and most extensive red tide the east coast of Florida has experienced and the first time Karenia species other than K. brevis have been reported in this area. This extensive red tide influenced commercial and recreational shellfish harvesting activities along Florida's east coast. Fourteen shellfish harvesting areas (SHAs) were monitored weekly during this event and 10 SHAs were closed for an average of 53 days due to this red tide. The length of SHA closure was dependent on the shellfish species present. Interagency cooperation in monitoring this K. brevis bloom was successful in mitigating any human health impacts. Kernel density estimation was used to create geographic extent maps to help extrapolate discreet sample data points into $5km^2$ radius values for better visualization of the bloom.

CONFIRMATION OF THE EXOPLANET AROUND β GEM FROM THE RV OBSERVATIONS USING BOES

  • Ran, In-Woo;Lee, Byeong-Cheol;Kim, Kang-Min;Mkrtichian, D.E.
    • Journal of The Korean Astronomical Society
    • /
    • v.41 no.3
    • /
    • pp.59-64
    • /
    • 2008
  • To detect exoplanets and study pulsation of K giant stars, we have observed precise RV (radial velocity) of about 55 early K giant (K0 - K4) stars brighter than V = 5 magnitude since 2003 by using BOES, a high resolution Echelle spectrograph attached to the 1.8 m telescope at BOAO (Bohyunsan Optical Astronomy Observatory). We detected periodic RV variation of KO III star $\beta$ Gem (HD 62509) with a period $P\;=\;596.6\;{\pm}\;2.3$ days and a semi-amplitude $K\;=\;44.8\;{\pm}\;0.7\;ms^{-1}$. If we adopt 1.7 $M_{\odot}$ for the mass of $\beta$ Gem, this yields the minimum mass of the companion m sin i = 2.64 $M_{Jupiter}$. Our results agree well with Hatzes et al. (2006) and Reffert et al. (2006), and confirm their discovery of a planetary object around $\beta$ Gem. We also confirmed about 192 minutes short period stellar oscillation found by Hatzes and Zechmeister (2007). This is the first report of exoplanet detection using BOES and demonstrates that the RV observation using BOES is accurate and stable enough to detect exoplanets around bright K giant stars.

Search for Dormant Comets in the Infrared Asteroidal Catalog

  • Kim, Yoonyoung;Ishiguro, Masateru;Usui, Fumihiko
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.67.2-67.2
    • /
    • 2014
  • Comet nucleus is a solid body consisting of dark dust grains and ice. Cometary volatiles sublimate from subsurface layer by solar heating, leaving behind large dust grains on the surface. Eventually, the appearance could turn into asteroidal rather than cometary. It is, therefore, expected that there would be "dormant comets" in the list of known asteroids. Our research group has undertaken the research on the population of dormant comets. We applied a brand-new asteroidal catalog compiled from data garnered by three infrared astronomical observatories, AKARI, IRAS and WISE. We extracted objects which have comet-like orbits on the basis of their orbital properties (Tisserand parameters with respect to Jupiter, TJ, and aphelion distance, Q). We found that (1) there are a considerable number (>100) of asteroids in comet-like orbits, and (2) 80% of them have low albedo consistent with comets. This result suggest that these low albedo objects could be dormant comets. One unanticipated finding is that 20% of asteroids in comet-like orbit have high albedo similar to S-type asteroids. It is difficult to explain the population of S-type asteroids in comet-like orbits by the classical mechanics theory. We further found that these high-albedo objects are small (D < 2 km) bodies distributed in near-Earth space. We suggest that such high-albedo, small, near-Earth asteroids are susceptible to Yarkovsky effect and injected into comet-like orbits.

  • PDF