• Title/Summary/Keyword: Journal of Wood Science

Search Result 3,968, Processing Time 0.027 seconds

Effect of Finger Profile on Static Bending Strength Performance of Finger-Jointed Wood

  • Park, Han-Min;Lee, Gyun-Pil;Kong, Tae-Suk;Ryu, Hyun-Soo;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.57-66
    • /
    • 2004
  • To study the efficient usage of small diameter logs and woods containing defects such as knots, slope of the grain and decay, six types of finger-jointed woods with various finger profiles were made of poplar, pine and oak with different density. We investigated the effect of finger profile on static bending strength performances of finger-jointed woods. The efficiency of bending MOE, MOR and deflection showed the highest value in poplar finger-jointed wood with the lowest density of three species, and the lowest value in oak finger-jointed wood with the highest density of three species. The values markedly decreased with increasing finger pitch for finger-jointed wood glued with polyvinyl acetate (PVAc) resin for all tested species, whereas for the finger-jointed wood glued with resorcinol-phenol formaldehyde (RPF) resin, the influence of finger pitch on the efficiency of MOE was not found in all tested species, and those on the efficiency of MOR and deflection indicated the same trend as finger-jointed wood glued with PVAc resin in the case of pine and oak finger-jointed wood with higher densities. It was found that the values tended to decrease with increasing density of species on the whole and the desirable finger pitches were L (6.8 mm) for poplar, M (4.4 mm) for pine and S (3.5 mm) for oak in a view of economy. For finger-jointed wood glued with PVAc resin, the fitness between a tip and a root width of a pair of fingers δ of 0.5 mm indicated the highest efficiency of MOE for all species. And, the influence of δ on MOR was only found in oak finger-jointed wood glued with RPF resin and the desirable δ value for oak was 0.1 mm. However, it was found that the influence of δ on the strength performance was very small.

Crystal Structures of the Vessel Elements and the Wood Fibers of Quercus variabilis BLUME (굴참나무재의 목섬유 및 도관 cellulose의 결정구조)

  • Kim, Nam-Hun;Lee, Woon-Yong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.15-20
    • /
    • 1993
  • X-ray diffractograms of the vessel elements and the wood fibers of Quercus variabilis BLUME were recorded and resolved into characteristic reflections of cellulose I. Some differences were observed in the ratio of integrated intensity and crystallinity index between vessel elements and wood fibers. Present results suggest that cellulose crystal structure in the hardwood species was varied with the elements of wood.

  • PDF

Feasibility of Value-added Utilization of Ash Trees Infested with Emerald Ash Borer

  • Kim, Jae-Woo;Matuana, Laurent M.
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.5
    • /
    • pp.79-87
    • /
    • 2006
  • Value-added utilization of the disposed ash trees due to the infestation by Emerald Ash Borer (EAB) was explored by converting them into particleboards (PBs) and wood-plastic composites (WPCs). The experimental result showed that PB panels could be successfully manufactured from the ash wood but compaction ratio need to be higher than 1.3 in order to meet the standard requirements listed by American National Standards Institute (ANSI). Ash wood plastic composites with high density polyethylene (HDPE) and polypropylene (PP) were also prepared with additives by extrusion. Physical and mechanical properties of ash wood plastic composite compared favorably to those made of pine and maple.

Predicting the Withdrawal Load of Wood Screws in Domestic Wood by Screw Diameter, Depth of Penetration and Specific Gravity of Wood (국내산 목재에 대한 나사못 직경, 관입길이 및 목재비중에 따른 나사못 유지력 예측)

  • Cha, Jae-Kyung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.3
    • /
    • pp.252-257
    • /
    • 2011
  • Tests were carried out on domestic wood samples to modify the formula which had previously been developed to predict the withdrawal strength of screw on the face of lumber. Screw sizes were No. 6, 8 and 10 used in this study. Predicted equations were fitted to the results of different length of No. 8 wood screw. The withdrawal strength of screws was enabled to predicted as a function of screw diameter, depth of penetration, and specific gravity of wood. Predicted equation was under-predicted the withdrawal strength of 25 and 30 mm length of screw within 5% and over-predicted withdrawal strength of 18 and 38 mm length of screw.

Chemical Properties of Artificially Buried Wood in an Intertidal Zone during the Deterioration Period

  • SEO, Sujin;KIM, Taekjoon;LEE, Jae-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.6
    • /
    • pp.896-906
    • /
    • 2020
  • Wood deterioration experiments were carried out for 6 months in an intertidal zone of South Korea to monitor the changes in the chemical properties of two types of species, Korean red pine and sawtooth oak. The results of FT-IR spectra and XRD patterns have shown that the chemical properties of the wood did not change significantly during the 6-month burial period. However, the brightness of the surface decreased after burial; the value of the sawtooth oak sample was lower than that of the Korean red pine sample owing to an accumulation of inorganic compounds in cell lumen as observed by ICP analysis. Among the inorganic compounds, sodium and sulfur concentrations increased significantly over the burial period compared with the control. Further, the maximum moisture content decreased from 199% to 136% in the Korean red pine and 62% to 60% for the sawtooth oak. Nevertheless, the major chemical composition of both the wood species did not change significantly during the 6-month burial period, whereas, the crystallinity decreased with an increasing burial period owing to an accumulation of inorganic compounds in the lumen.

Experimental Investigation of the Sound Absorption Capability of Wood Pellets as an Eco-Friendly Material

  • JANG, Eun-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.50 no.2
    • /
    • pp.126-133
    • /
    • 2022
  • In this study, I used wood pellets as an eco-friendly sound-absorbing material. The aim of the research was to analyze the effect of the filling height of wood pellets on sound absorption. This was done using two types of wood pellets of different lengths (A group: 1.5-3 cm, B group: less than 1.5 cm). With increasing filling height of the wood pellets, the optimum sound absorption shifted towards a lower frequency. The group B wood pellets had better sound absorption capacity than the group A ones. The optimum sound absorption coefficient of group A filled to a height of 7 cm was 0.722 at 864 Hz. On the other hand, that of group B filled to a height of 7 cm was 0.764 at 862 Hz, 5.82% higher than that of group A. While wood pellets are used as an eco-friendly fuel, the results of this study suggest the possibility of using wood pellets as an eco-friendly sound-absorbing material.

Hygroscopicity and Ultraviolet (UV) Deterioration Characteristics of Finished Woods

  • KIM, Ji-Yeol;KIM, Byung-Ro
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.5
    • /
    • pp.471-481
    • /
    • 2021
  • This study investigated the hygroscopicity and UV deterioration characteristics of 3 domestic and 4 imported woods using natural oil, stain, and varnish paints. In terms of hygroscopicity, it was found that the hygroscopicity of the painted wood was lower than that of the unpainted wood, and that as the number of coatings increased, the hygroscopicity decreased. In terms of anti-absorption, oil-based chemical paints showed higher resistance than water-based paints, and natural oils showed results comparable to oil-based paints. As for the UV deterioration, the amount of color change of the painted wood was lower than that of the unpainted wood, and there was no significant difference according to the number of times of painting. The amount of color change was found to be low in oil-based paints and hardwoods. Through this study, we confirmed effective moisture blocking and small color changes during painting using paints, and it is believed that wood can be protected from internal and external defects through selective and efficient painting based on data for excellent painting performance.