• Title/Summary/Keyword: Journal Bearing Wear

Search Result 200, Processing Time 0.025 seconds

ANN Based System for the Detection of Winding Insulation Condition and Bearing Wear in Single Phase Induction Motor

  • Ballal, M.S.;Suryawanshi, H.M.;Mishra, Mahesh K.
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.4
    • /
    • pp.485-493
    • /
    • 2007
  • This paper deals with the problem of detection of induction motor incipient faults. Artificial Neural Network (ANN) approach is applied to detect two types of incipient faults (1). Interturn insulation and (2) Bearing wear faults in single-phase induction motor. The experimental data for five measurable parameters (motor intake current, rotor speed, winding temperature, bearing temperature and the noise) is generated in the laboratory on specially designed single-phase induction motor. Initially, the performance is tested with two inputs i.e. motor intake current and rotor speed, later the remaining three input parameters (winding temperature, bearing temperature and the noise) were added sequentially. Depending upon input parameters, the four ANN based fault detectors are developed. The training and testing results of these detectors are illustrated. It is found that the fault detection accuracy is improved with the addition of input parameters.

Performance Evaluation of Nano-Lubricants at Journal Bearing of Scroll Compressors (나노 윤활유를 이용한 스크롤 압축기 저널 베어링의 윤활특성 평가)

  • Kim, Kyong-Min;Hwang, Yu-Jin;Lee, Kwang-Ho;Sung, Chi-Un;Lee, Jae-Keun;Jung, Won-Hyun;Kim, Sung-Choon;Jin, Hong-Kyun
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.189-193
    • /
    • 2008
  • Performance of refrigerant oil at the thrust-bearing and at the journal-bearing of a scroll compressor is a significant factor. This paper presents the friction and anti-wear characteristics of nano oil with a mixture of a refrigerant oil and carbon nano particles in the journal bearing of scroll compressors. The characteristics of friction and anti-wear using nano-oil is evaluated using the disk on disk tester and the journal bearing tester for measuring friction surface temperature and the coefficient of friction at the journal bearing tester. In journal bearing test, the average friction coefficient of high concentration nano-oil was decreased down to 18% compared to raw oil under 4,500 N and 3,600 rpm. It is believed that nano particles can be coated on the wear surfaces and the interaction of nano particles between surfaces can be improved the lubrication in the friction surfaces. Worn surfaces of frictional specimen were measured with straightness. carbon nano oil enhances the characteristics of the anti-wear and friction at the joural bearing of scroll compressors.

  • PDF

Macroscopic Wear Characteristics of Ceramics under the Rolling Contact (구름접촉시 세라믹의 거시적 마모특성)

  • Kim, Seock-Sam;Koto, Kohji;Hokkirigawa, Kzauo
    • Tribology and Lubricants
    • /
    • v.5 no.1
    • /
    • pp.28-35
    • /
    • 1989
  • The wear tests of ceramic materials in dry rolling contact were carried out at room temperature to investigate their macroscopic wear characteristics. Both point contact and line cootact were adapted in the wear tests of them. Ceramic materials used in these tests were silicon nitride, silicon carbide, cermet of TiN and TiC, titania, and alumina. The wear test of the bearing steel was carried out to compare to the wear test results of the ceramic materials. The results showed that the wear rate of silicon nitride was smaller than any other ceramic materials and bearing steel. In the steady wear, the wear volume of ceramic materials increases linearly with the rolling distance. It was also found from the experimental results that fracture toughness and surface roughness dominate the wear process of ceramic materials in dry rolling contact.

Arthroscopic Diagnosis of Polyethylene Wear of Meniscal Bearing in Unicompartmental Knee Arthroplasty - A Case Report - (인공 슬관절 단일구획 치환술 후 폴리에틸렌 마모의 관절경적 진단 - 증례 보고 -)

  • Kang, Kyu-Bok;Yoon, Jung-Ro;Park, Sung-Chul;Song, Seungyeop;Yang, Jae-Hyuk
    • Journal of the Korean Arthroscopy Society
    • /
    • v.16 no.2
    • /
    • pp.190-194
    • /
    • 2012
  • The role of arthroscopy for the diagnosis of polyethylene wear after total knee arthroplasty has been reported previously. In this report, we demonstrate a case of wear of meniscal bearing in unicompartmental knee arthroplasty (UKA) and recurrent meniscal bearing subluxation which was diagnosed by arthroscopy. Arthroscopic examination has its role in diagnosing the wear and subluxation of polyethylene bearing after UKA.

  • PDF

Analysis of Mean Deviation in Sliding-wear-rate of Carbon Steel with Various Pearlite Volume Fractions (탄소강의 펄라이트 분율에 따른 미끄럼 마멸속도 편차 분석)

  • Kim, M.G.;Gwon, H.;Hur, H.L.;Kim, Y.-S.
    • Transactions of Materials Processing
    • /
    • v.24 no.3
    • /
    • pp.205-211
    • /
    • 2015
  • The current investigation was performed to study sliding-wear-rate deviation (wear-rate data scatter) in carbon steels with various microstructures. Pure iron, 0.2 wt. % C steel, 0.45 wt. % C steel, and bearing steel (AISI52100) were used for the investigation. These steels possess different microstructures. Microstructures of the pure iron, two carbon steel and the bearing steel were full ferrite, ferrite + pearlite and full pearlite, respectively. Depending on the carbon content, the carbon steel had different pearlite-volume fractions. Dry sliding wear tests of the steel were conducted using a ball-on-disk wear tester at a sliding speed of 0.1 m/s using a bearing ball (AISI52100) as a counterpart. Applied load and sliding distance were 100 N and 300 m, respectively. More than three (up to twelve) tests were conducted for each steel under the same conditions, and the mean deviations in the wear rate of the steel (microstructure) were compared. The wear-rate deviation in the steel with ferrite + pearlite microstructure was higher than that with ferrite microstructure, and the deviation decreased with the increase of pearlite volume fraction. The pure iron and the bearing steel specimens showed much less deviation. The high deviation observed from the ferrite + pearlite steel was attributed to irregular subsurface-crack nucleation and growth at the interface between the two micro constituents (ferrite and pearlite) during the wear test.

A Study on the Tribological Characteristics of Low Friction Coating Deposited on SUJ2 Bearing Steel (고탄소크롬 베어링강 2종(SUJ2) 베어링강에 증착된 저마찰 코팅의 트라이볼로지적 특성 연구)

  • Kang, Kyung-Mo;Shin, Dong-Gap;Park, Young-Hun;Kim, Se-Woong;Kim, Dae-Eun
    • Tribology and Lubricants
    • /
    • v.34 no.6
    • /
    • pp.254-261
    • /
    • 2018
  • In order to reduce resistance torque and energy loss, minimizing friction between race surface and rolling elements of a bearing is necessary. Recently, to reduce friction in bearing element, solid lubricant coating for the bearing raceway surface has been receiving much attention. Considering the operating conditions of real bearings, verifying the effect of solid lubricant coatings under extreme conditions of high load that is more than 1 GPa is necessary. In this study, we evaluated the friction and wear characteristics of SUJ2 bearing steels deposited by carbon-based coatings (Si-DLC, ta-C), $MoS_2$ and graphite. In case of $MoS_2$ and graphite coatings, different surface treatments were applied to the coatings to verify the effect of surface treatment. A pin-on-disc type tribotester was used to evaluate the tribological characteristics of the coatings. It was possible to quantitatively estimate the friction and wear characteristics of solid lubricant under dry and lubrication conditions. The carbon-based coatings improved the friction and wear properties of SUJ2 bearing steels under the high load condition, but $MoS_2$ and graphite coatings were not suitable for high load conditions due to its low hardness. Different friction and wear behaviors were found for different substrate surface treatment method. Also, it was confirmed that solid lubricant coatings had a more positive effect than just applying the lubricant for improving the tribological characteristics.

Thermohydrodynamic Analysis and Pad Temperature Measurement of Tilting Pad Journal Bearing with Worn Pad (표면이 마모된 틸팅 패드 저널베어링의 열윤활 해석 및 온도 측정)

  • Lee, Donghyun;Sun, Kyungho;Kim, Byungock;Kang, Donghyuk
    • Tribology and Lubricants
    • /
    • v.33 no.4
    • /
    • pp.134-140
    • /
    • 2017
  • With the increase in adoption of tilting pad journal bearings (TPJBs), various failure mechanisms related to TPJBs have been reported, of which pad wear is a frequently reported one. Pad wear causes change in geometry of the bearing, which can sometimes result in the failure of the entire system. The objective of this research is to investigate the influence of pad wear on the pad temperature, which is one of the widely used condition monitoring methods for TPJBs. For the theoretical investigation, thermohydrodynamic (THD) analysis was conducted by solving the generalized Reynolds equation and the 3D energy equation. The results of the analysis show that the temperature of the loaded pad increases while that of the unloaded pad decreases, when there is wear on the loaded pads. In addition, the minimum film thickness decreases with an increase in the wear depth. A validation test was conducted with a test rig, which mimics the axial turbine when a test rotor is supported by two TPJBs. The test bearing consists of five pads with a diameter of 60 mm, and a resistance temperature detector (RTD) is installed in the pad for temperature monitoring. The test was performed by replacing the two loaded pads with the worn pad. The test result for the TPJB with wear depth of $30{\mu}m$ show that the temperatures of the loaded pads are $8^{\circ}C$ higher and that of the unloaded pad is $2.5^{\circ}C$ lower than that of the normal TPJB. In addition, the predicted pad temperature shows good agreement with the measured pad temperatures.

Analysis of the Sliding Wear Mechanism of Pure Iron Tested Against Different Counterparts in Various Atmospheres (상대재와 분위기에 따른 순철의 미끄럼 마멸 기구 분석)

  • Koo, B.W.;Gwon, H.W.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.26 no.6
    • /
    • pp.365-371
    • /
    • 2017
  • During sling wear of a ferrous metal, a surface layer is formed. Its microstructure, constituting phases, and mechanical property are different from those of the original wearing material. Since wear occurs at the layer, it is important to characterize the layer and understand how wear rate changes with different layers. Various layers are formed depending on external wear conditions such as load, sliding speed, counterpart material, and environmental conditions. In this research, sliding wear tests of pure iron were carried out against two different counterparts (AISI 52100 bearing steel and $Al_2O_3$) in the air and in an inert Ar gas atmosphere. Pure iron was employed to exclude other effects from secondary phases in steel on the wear. Wear tests were performed at room temperature. Worn surfaces, wear debris, and cross-sections were analyzed after the test. It was found that these two different counterparts and environments produced diverse layers, resulting in significant changes in wear rate. Against the bearing steel, pure iron showed higher wear rate in an Ar atmosphere due to severe adhesion than that in the air. On the contrary, the iron showed much higher wear rate in the air against $Al_2O_3$. Different layers and wear rates were analyzed and discussed by oxidation, severe plastic deformation, and adhesion at wearing surfaces.

Friction and Wear Properties of Cu and Fe-based P/M Bearing Materials

  • Tufekci Kenan;Kurbanoglu Cahit;Durak Ertugrul;Tunay R. Fatih
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.513-521
    • /
    • 2006
  • The performances of porous bearings under different operating conditions were experimentally investigated in this study. Material groups studied are 90%Cu + 10%Sn bronze and 1%C + % balance Fe iron-based self-lubricating P/M bearings at constant (85%) density. In the experiments, the variation of the coefficient of friction and wear ratio of those two different group materials for different sliding speeds, loads, and temperatures were investigated. As a result, the variation of the friction coefficient-temperature for both constant load, and constant sliding speed, friction coefficient-average bearing pressure, PV-wear loss and temperature-wear loss curves were plotted and compared with each other for two materials, separately. The test results showed that Cu-based bearings have better friction and wear properties than Fe-based bearings.

Diagnosis of a Journal Bearing Fault via Current Signature Analysis (전류신호 분석을 통한 저널베어링 이상상태 진단)

  • Park, Jin-Seok;Huh, Hyung;Jeong, Kyeong-Hoon;Lee, Kyu-Mahn;Park, Keun-Bae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.119-122
    • /
    • 2005
  • A study on motor current signature analysis has been executed for monitoring the fault of journal bearing due to wear. The air gap eccentricity of motor produces specific frequencies in motor current, the supplied current frequency plus and minus rotational rotor frequency. The air gap eccentricity is simulated by the clearance of Journal bearing. The amplitudes of the specific frequencies increase with the increasing clearances. The amplitudes of the specific frequencies continue to increase over the wear limit that is used in the manufacturer of the test motor. Though clear relations between the amplitudes of the specific frequencies and the clearances are not obtained in this paper, the specific frequencies can be used as an indicator of a journal bearing fault. Further study is necessary to make out the quantitative relations between the specific frequencies and the clearances.

  • PDF