• Title/Summary/Keyword: Joule's heat

Search Result 58, Processing Time 0.022 seconds

A Study on Joule Heating Simulation Method to Prevent Sensitivity Current Trip of Electric Vehicle Charger (전기자동차 충전기의 누전차단기 감도 전류 Trip 방지를 위한 Joule Heating 시뮬레이션 방안연구)

  • Lee, Beoung-Kug;Eo, Ik-soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.150-159
    • /
    • 2021
  • This study aimed to prevent inconvenience to electric vehicle users caused by an interruption of charging by the earth leakage breaker trip that occurs during charging. As a field case study, it was confirmed that during the battery charger failure type, leakage current measurement experiment by vehicle type, and leakage current breaker operation experiment, the internal temperature of the charger rose to more than 60 ℃ in summer, and the earth leakage circuit breaker stopped charging by tripping at 80% of the rated sensitivity current. Through Joule heating modeling, 32A is energized at the reference temperature of 30 ℃ at the initial time t=0 (s). After t=3000 (s), the heat generated around the charging part of the earth leakage breaker increased to 32.4 ℃. The temperature and time factors correlated with the amount of heat generated according to the statistical verification tool with a correlation coefficient of 0.97. Overall, it is possible to prevent the leakage breaker sensitivity current trip due to an increase in temperature inside the charger in summer by performing a Joule heating simulation according to the material of the charging case, the arrangement of the internal wiring, and the dielectric medium when developing the charger device.

A Study on Application of Warm Air Circulator by Using the Carbon Heating Element with Particle Type (입상 탄소 발열체의 열원을 이용한 온풍기의 적용에 관한 연구)

  • Bae, K.Y.;Lee, K.S.;Kong, T.W.;Chung, H.S.;Jeong, H.Y.;Chung, H.T.
    • Journal of Power System Engineering
    • /
    • v.7 no.4
    • /
    • pp.31-37
    • /
    • 2003
  • This paper is a study on application of warm air circulator by using the carbon heating element with particle type. The main variables are the input current and amount of carbon heating source for experimental characteristics. The experimental results are obtained as follows. As the input current and temperature are increased, the resistance of heat source is decreased about $20{\sim}25%$ by the effect of negative resistance. As the amount of heating source is small, Joule heat is large with the input current. When the amount of heating source is 300 and the input current is 15A, the value of Joule heat is about 4604.6kJ/h. The heat production efficiency of carbon heating source is larger about 10% than the sheath heater.

  • PDF

Study on the Heat Generation Characteristics of the Carbon Heating Source with High Temperature (고온 카본발열체의 발열특성에 관한 연구)

  • Bae, K.Y.;Lee, K.S.;Shin, J.H.;Jeong, H.M.;Chung, H.S.;Chun, J.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.106-111
    • /
    • 2001
  • This paper is a study on the heat generation characteristics of the carbon heating source with high temperature. The main variables of this study are the input current and the amount of carbon heating source. As the results of the experiment in the waste rate of carbon heating source. The case of carbon heating source 300g was large than 500g. As the input current and the temperature are increased, the resistance values of carbon heating source were large. The Joule heat was represented the large value as the amount of heating source decrease with the input current. Finally, the heating source was represented the electrical steady state as the input current is increase.

  • PDF

Investigation of Mechanical Stability of Nanosheet FETs During Electro-Thermal Annealing (Nanosheet FETs에서의 효과적인 전열어닐링 수행을 위한 기계적 안정성에 대한 연구)

  • Wang, Dong-Hyun;Park, Jun-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.1
    • /
    • pp.50-57
    • /
    • 2022
  • Reliability of CMOS has been severed under aggressive device scaling. Conventional technologies such as lightly doped drain (LDD) and forming gas annealing (FGA) have been applied for better device reliability, but further advances are modest. Alternatively, electro-thermal annealing (ETA) which utilizes Joule heat produced by electrodes in a MOSFET, has been newly introduced for gate dielectric curing. However, concerns about mechanical stability during the electro-thermal annealing, have not been discussed, yet. In this context, this paper demonstrates the mechanical stability of nanosheet FET during the electro-thermal annealing. The effect of mechanical stresses during the electro-thermal annealing was investigated with respect to device design parameters.

Fabrication of poly-crystalline silicon ingot for solar cells by CCCC method (CCCC법에 의한 태양전지용 다결정 실리콘 잉고트의 제조)

  • Shin J. S.;Lee D. S.;Lee S. M.;Moon B. M.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.94-97
    • /
    • 2005
  • For the fabrication of poly-crystalline silicon ingot, CCCC (Cold Crucible Continuous Casting) method under a high frequency alternating magnetic field, was utilized in order to prevent crucible consumption and ingot contamination and to increase production rate. In order to effectively and continuously melt and cast silicon, which has a high radiation heat loss due to the high melting temperature and a low induction heating efficiency due to a low electric conductivity, Joule and pinch effects were optimized. Throughout the present investigation, poly-crystalline Si ingot was successfully produced at the casting speed of above 1.5 mm/min under a non-contact condition.

  • PDF

A Study on the Effect of Bridge's Characteristics on Tracking Phenomena (브리지 특성이 트래킹에 미치는 영향에 관한 연구)

  • Jee, Seung-Wook;Ok, Kyung-Gea;Lee, Chun-Ha;Lee, Kwang-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.8
    • /
    • pp.82-88
    • /
    • 2008
  • This paper describes the influence of the bridge formed between electrodes by electrolyte for tracking process. Electrolytes is made by IEC(International Electrotechnical Commission) 60589, NaCl added to deionized water as each 1, 3, 5[wt%]. The used test equipment is made according to KS(Korean Industrial Standard) C IEC 00112. It is investigated voltage, current, value of resistance and thermal image when bridge formed between electrodes on tracking process. As a result, as conductivity of electrolyte gets bigger as Joule's heat on bridge also gets bigger. But It is not over electrolyte's boiling point due to evaporation heat of electrolyte. However as conductivity of electrolyte gets bigger as the necessary time of dry band gets shorter. So dry band is existed more long time between ahead of droplet to next droplet and discharge chance at dry band gets much. Therefore tracking process gets faster.

Minimum Heat Dissipation of HTS Current Lead Having Partial Current Sharing Region (일부 전류분류영역을 가짐으로서 최소 열손실을 갖는 초전도 전류도입선)

  • Seol, S.Y.;Her, K.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.131-136
    • /
    • 2001
  • In this paper, a high-temperature superconductor(HTS) current lead operating in current sharing mode is described. The minimum heat dissipation and the optimum safety factor(cross-sectional area) is obtained analytically for partial current sharing HTS leads. It is assumed that the current lead is in conduction cooled state, and the sheath material is the alloy of silver and gold. The reduced cross-sectional area results partial current sharing state, and consequently reduces conduction heat transfer, but the Joule heat generation is increased. The optimized HTS current lead is different from the conventional copper leads. In the copper leads, the minimum heat dissipation is obtained for the zero gradient of temperature at warm end. However, the temperature gradient at warm end is not zero when the HTS lead operates at minimum dissipation state.

  • PDF

Miniature J-T Refrigerator Using Triplet Heat Exchanger (Triplet 열교환기를 사용하는 소형 J-T 냉동기)

  • Hwang, G.;Jeong, S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.1
    • /
    • pp.60-63
    • /
    • 2009
  • Most J-T (Joule-Thomson) refrigerators use a Giaque-Hampson type heat exchanger due to its excellent thermal performance and compactness. The cryoprobe (cryosurgical probe) treating prostate cancer usually has a dimension of 17 gauge (1.6 mm diameter), so it does not have enough space to bear a Giaque-Hampson type heat exchanger. In this paper, the triplet heat exchanger is adopted as the heat exchanger of cryoprobe, and the performance is investigated with an experimental test. The result shows that the triplet heat exchanger can be substituted for Giaque-Hampson type heat exchanger in the application of cryosurgery.

Closed-Loop Cooling System for High Field Mangets (고자기장용 자석을 위한 밀폐순환형 냉각장치)

  • Choi, Y.S.;Kim, D.L.;Lee, B.S.;Yang, H.S.;Painter, T.A.;Miller, J.R.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.1
    • /
    • pp.59-64
    • /
    • 2006
  • A closed-loop cryogenic cooling system for high field magnets is presented. This design is motivated by our recent development of cooling system for 21 tesla Fourier Transform ion Cyclotron Resonance (FT-ICR) superconducting magnets without any replenishment of cryogen. The low temperature superconducting magnets are immersed in a subcooled 1.8 K bath, which is connected hydraulically to the 4.2 K reservoir through a narrow channel. Saturated liquid helium is cooled by Joule-Thomson heat exchanger and flows through the JT valve, isenthalpically dropping its pressure to approximately 1 6 kPa, corresponding saturation temperature of 1.8 K. Helium gas exhausted from pump is now recondensed by two-stage cryocooler located after vapor purify system. The amount of cryogenic Heat loads and required mass flow rate through closed-loop are estimated by a relevant heat transfer analysis, from which dimensions of JT heat exchanger and He II heat exchanger are determined. The detailed design of cryocooler heat exchanger for helium recondensing is performed. The effect of cryogenic loads, especially superfluid heat leak through the gap of weight load relief valve, on the dimensions of cryogenic system is also investigated.