• Title/Summary/Keyword: Jointed type

Search Result 78, Processing Time 0.023 seconds

Failure Behavior of Pin-jointed Carbon/Epoxy Composites using Acoustic Emission (음향방출법을 이용한 탄소섬유/에폭시 복합재의 핀 체결부 파괴거동)

  • Kim, Chan-Gyu;Hwang, Young-Eun;Yoon, Sung-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.520-522
    • /
    • 2011
  • In this paper, the bearing strengths and fracture behaviors of the pin-jointed carbon fiber/epoxy composites were investigated through pin loading test. The composites were fabricated by a filament winding process, and two types of laminated patterns were considered. According to the results, type 1 pattern revealed a net-tension failure mode, whereas type 2 pattern exhibited a bearing failure mode. Also, acoustic emission energy of the type 2 pattern was higher than that of the type 1 pattern. Therefore, the type 2 pattern was found to be structurally safer than the type 1 pattern.

  • PDF

Estimation of Elastic Modulus of Jointed Rock Mass under Tunnel Excavation Loading (터널 굴착하중 조건에서의 절리암반의 탄성계수 예측)

  • Son, Moorak;Lee, Won-Ki;Hwang, Young-Cheol
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.7
    • /
    • pp.17-26
    • /
    • 2014
  • Tunneling-induced displacement in a jointed rock mass is an important factor to control tunnel stability and to secure a demanded space and construction quality. The magnitude of the inducible displacements is significantly affected by an elastic modulus and therefore, in a rock mass where a joint controls tunnel behavior, it is very important to estimate an elastic modulus of jointed rock mass reliably. Elastic modulus of jointed rock mass is affected by many factors such as rock type, joint condition, and loading condition. Nevertheless, most existing studies were focused on rough empirical relationships based on compressive loading conditions, which are different from tunnel excavation loading conditions, without a systematic approach of rock, joint, and loading conditions together. Therefore, this study considered rock and joint conditions systematically to estimate an elastic modulus of jointed rock mass under tunnel excavation loading. The controlled factors considered in this study are rock types and joint conditions (joint shear strength, joint inclination angle, number of joint sets, and joint spacing). Numerical parametric studies have been carried out with a consideration of different rock and joint conditions; the results have been compared with existing empirical relationships; and charts of elastic modulus change of different rock and joint conditions have been provided. The results are expected to have a great practical use for estimating the convergence induced by tunnel excavation in jointed rockmass.

Safe Speed Limit of Robot Arm During Teaching and Maintenance Work (로보트 교시.정비작업시의 안전속도한계)

  • 김동하;임현교
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.1
    • /
    • pp.64-70
    • /
    • 1993
  • Serious injuries and deaths due to multi-jointed robot occur when a man mispercepts. especially during robot teaching and maintenance work. Since industrial robots often operate with unpredictable motion patterns, establishment of safe speed limit of robot arm is indispensable. An experimental emergency conditions were simulated with a multi-jointed robot. and response characteristics of human operators were measured. The result showed that failure type, robot arm axis. and robot arm speed had significant effects on human reaction time. The reaction time was slightly increased with robot arm speed. though it showed somewhat different pattern owing to failure type. Furthermore the reaction time to the axis which could flex or extend. acting on a workpiece directly. was fastest and its standard deviation was small. The robot arm speed limit securing a‘possible contact zone’based on overrun distance was about 25cm/sec. and in this sense the validity of safe speed limits suggested by many precedent researchers were discussed.

  • PDF

Failure Behavior of Pin-jointed Cylindrical Composites Using Acoustic Emission Technique (AE기법을 이용한 원통형 복합재의 핀 체결부 파괴거동)

  • Yoon, Sung-Ho;Hwang, Young-Eun;Kim, Chan-Gyu
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.4
    • /
    • pp.9-15
    • /
    • 2012
  • In this paper, the bearing strengths and fracture behaviors of the pin-jointed carbon fiber/epoxy composites were investigated through pin loading test with acoustic emission technique. The composites were fabricated by a filament winding process, and three types of laminated patterns were considered. Type 1 was fabricated with stitch, Type 2 was fabricated without stitich and Type 3 was fabricated with prepregs. According to the results, bearing strength of Type 1 was 3.3% lower than that of Type 2 and that of Type 3 was highest. Type 1 and Type 2 revealed a net-tension failure mode, respectively, whereas Type 3 pattern exhibited a bearing failure mode. Also, acoustic emission energy of the Type 3 was higher than that of the Type 1 and Type 2. Therefore, the Type 3 was found to be structurally safer than the Type 1 and Type 2.

Development of Microstructure and Mechanical Properties of Friction Stir Lap Jointed Invar 42/SS 400 (겹치기 마찰교반접합된 Invar 42/SS 400 합금의 미세조직과 기계적 특성 발달)

  • Song, K.H.;Nakata, Kazuhiro
    • Journal of Welding and Joining
    • /
    • v.30 no.5
    • /
    • pp.34-39
    • /
    • 2012
  • This study was conducted to investigate the microstructure and mechanical properties of friction stir lap joints. Invar 42 and SS 400 were selected as the experimental materials, and friction stir welding was carried out at a tool rotation speed of 200 rpm and welding speed of 100 mm/min. The application of friction stir welding to Invar 42 effectively reduced the grain size in the stir zone; the average grain size of Invar 42 was reduced from $11.5{\mu}m$ in the base material to $6.4{\mu}m$ in the stir zone, which resulted in an improvement in the mechanical properties of the stir zone. The joint interface between Invar 42 and SS 400 showed a relatively sound weld without voids and cracks, and the intermetallic compounds with $L1_2$ type in lap jointed interface were partially formed with size of 100 nm. Moreover, the hook in the advancing side of Invar 42 was formed from SS 400, which contributed to maintenance of the tensile strength. The evolution of microstructures and mechanical properties of friction stir lap jointed Invar 42 and SS 400 are also discussed herein.

Characteristics of the Earth Pressure Magnitude and Distribution in Jointed Rockmass (절리가 형성된 암반지층에서 발생된 토압의 크기 및 분포특성)

  • Son, Moorak;Yoon, Cheolwon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6C
    • /
    • pp.203-212
    • /
    • 2011
  • This paper investigates the caharactheristics of the earth pressure magnigue and distribution in jointed rockmass for a safe and economic design and construction of earth retaining structures installed in rock stratum. For this purpose, this study will first investigate the limitations and problems of the existing earth pressure studies and then to overcome them th study will conduct the discontinuum numerical parametric studies based on the Discrete Element Method (DEM), which can consider the joint characteristics in rock stratum. The controlled parameters include rock type and joint conditions (joint shear strength and joint angle), and the magnitude and distribution characteristics of earth pressure have been investigated considering the interactions between the ground and the retaining structures. In addition, the comparison between the earth pressures induced in rock stratum and Peck's earth pressure for soil ground has been carried out. From the comparison, it is found that the earth pressure magnitude and distribution in jointed rockmass has been highly affected by rock type and joint condition and has shown different characteristics compared with the Peck's empirical earth pressure. This result would hereafter be utilized as an important information and a useful data for the assessment of earth pressure for designing a retaining structures installed in jointed rockmass.

Effect of Joint Cohesive Strength on the Earth Pressure against the Support System in a Jointed Rock Mass (절리형성 암반지층 굴착벽체 작용토압에 대한 절리 점착강도의 영향)

  • Son, Moorak;Solomon, Adedokun
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.7
    • /
    • pp.41-53
    • /
    • 2014
  • This study examined the magnitude and distribution of the earth pressure on the support system in a jointed rock mass by considering different joint shear strength, rock type, and joint inclination angle. The study particularly focused on the effect of joint cohesive strength for a certain condition. Based on a physical model test (Son and Park, 2014), extended parametric studies were conducted considering rock-structure interactions based on the discrete element method, which can consider the rock and joint characteristics of rock mass. The results showed the earth pressure was strongly affected by the joint cohesive strength as well as the rock type and joint inclination angle. The study indicated that the effect of joint cohesive strength was particularly significant when a rock mass was under the condition of joint sliding. This paper investigates the magnitude of joint cohesive strength to prevent a joint sliding for each different condition. The test results were also compared with Peck's earth pressure, which has been frequently used for soil ground. The comparison indicated that the earth pressure in a jointed rock mass can be significantly different from that in soil ground. This study is expected to provide a better understanding of the earth pressure on the support system in a jointed rock mass.

Anchorage mechanism and pullout resistance of rock bolt in water-bearing rocks

  • Kim, Ho-Jong;Kim, Kang-Hyun;Kim, Hong-Moon;Shin, Jong-Ho
    • Geomechanics and Engineering
    • /
    • v.15 no.3
    • /
    • pp.841-849
    • /
    • 2018
  • The purpose of a rock bolt is to improve the mechanical performance of a jointed-rock mass. The performance of a rock bolt is generally evaluated by conducting a field pullout test, as the analytical or numerical evaluation of the rock bolt behavior still remains difficult. In this study, wide range of field test was performed to investigate the pullout resistance of rock bolts considering influencing factors such as the rock type, water bearing conditions, rock bolt type and length. The test results showed that the fully grouted rock bolt (FGR) in water-bearing rocks can be inadequate to provide the required pullout resistance, meanwhile the inflated steel tube rock bolt (ISR) satisfied required pullout resistance, even immediately after installation in water-bearing conditions. The ISR was particularly effective when the water inflow into a drill hole is greater than 1.0 l/min. The effect of the rock bolt failure on the tunnel stability was investigated through numerical analysis. The results show that the contribution of the rock bolt to the overall stability of the tunnel was not significant. However, it is found that the rock bolt can effectively reinforce the jointed-rock mass and reduce the possibility of local collapses of rocks, thus the importance of the rock bolt should not be overlooked, regardless of the overall stability.

Investigation of mechanical behaviour of non-persistent jointed blocks under uniaxial compression

  • Asadizadeh, Mostafa;Moosavi, Mahdi;Hossaini, Mohammad Farouq
    • Geomechanics and Engineering
    • /
    • v.14 no.1
    • /
    • pp.29-42
    • /
    • 2018
  • This paper presents the results of an empirical study in which square rock-like blocks containing two parallel pre-existing rough non-persistent joints were subjected to uniaxial compression load. The main purpose of this study was to investigate uniaxial compressive strength and deformation modulus of jointed specimens. Response Surface Method (RSM) was utilized to design experiments and investigate the effect of four joint parameters, namely joint roughness coefficient (JRC), bridge length (L), bridge angle (${\gamma}$), and joint inclination (${\theta}$). The interaction of these parameters on the uniaxial compressive strength (UCS) and deformation modulus of the blocks was investigated as well. The results indicated that an increase in joint roughness coefficient, bridge length and bridge angle increased compressive strength and deformation modulus. Moreover, increasing joint inclination decreased the two mechanical properties. The concept of 'interlocking cracks' which are mixed mode (shear-tensile cracks) was introduced. This type of cracks can happen in higher level of JRC. Initiation and propagation of this type of cracks reduces mechanical properties of sample before reaching its peak strength. The results of the Response Surface Methodology showed that the mutual interaction of the joint parameters had a significant influence on the compressive strength and deformation modulus.

Study on Numerical Analysis of Estimating Elastic Modulus in Rockmass with a Consideration of Rock and Joint Characteristcs (암석 및 절리특성을 고려한 암반의 탄성계수 추정에 관한 수치해석적 연구)

  • Son, Moorak;Lee, Wonki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.229-239
    • /
    • 2013
  • Elastic modulus in rockmass is an important factor to represent the characteristic of rock deformation and is frequently used to estimate the displacement induced due to tunnel excavation or other activities in rockmass. Nevertheless, the study to estimate the elastic modulus, which considers the rock type and joint characteristics (joint shear strength and joint inclination angle), has been done in less frequency. Accordingly, this study is aimed at estimating of elastic modulus in jointed rockmass. For this purpose, numerical parametric studies have been carried out with a consideration of rock and joint conditions. Tunnel displacement results have been used to estimate the elastic modulus of jointed rockmass using the elastic theory of circular tunnel. From this study, the results would be expected to have a great practical use for estimating the displacement induced due to tunnel excavation or other activities in jointed rockmass.