• Title/Summary/Keyword: Jointed Rock

Search Result 165, Processing Time 0.024 seconds

A review of experimental and numerical investigations about crack propagation

  • Sarfarazi, Vahab;Haeri, Hadi
    • Computers and Concrete
    • /
    • v.18 no.2
    • /
    • pp.235-266
    • /
    • 2016
  • A rock mass containing non-persistent joints can only fail if the joints propagate and coalesce through an intact rock bridge. Shear strength of rock mass containing non-persistent joints is highly affected by the both, mechanical behavior and geometrical configuration of non-persistent joints located in a rock mass. Existence of rock joints and rock bridges are the most important factors complicating mechanical responses of a rock mass to stress loading. The joint-bridge interaction and bridge failure dominates mechanical behavior of jointed rock masses and the stability of rock excavations. The purpose of this review paper is to present techniques, progresses and the likely future development directions in experimental and numerical modelling of a non-persistent joint failure behaviour. Such investigation is essential to study the fundamental failures occurring in a rock bridge, for assessing anticipated and actual performances of the structures built on or in rock masses. This paper is divided into two sections. In the first part, experimental investigations have been represented followed by a summarized numerical modelling. Experimental results showed failure mechanism of a rock bridge under different loading conditions. Also effects of the number of non-persistent joints, angle between joint and a rock bridge, lengths of the rock bridge and the joint were investigated on the rock bridge failure behaviour. Numerical simulation results are used to validate experimental outputs.

Development of Thermal-Hydraulic-Mechanical Coupled Numerical Analysis Code for Complex Behavior in Jointed Rock Mass Based on Fracture Mechanics (균열 암반의 복합거동해석을 위한 열-수리-역학적으로 연계된 파괴역학 수치해석코드 개발)

  • Kim, Hyung-Mok;Park, Eui-Seob;Shen, Baotang;Synn, Joong-Ho;Kim, Taek-Kon;Lee, Seong-Cheol;Ko, Tae-Young;Lee, Hee-Suk;Lee, Jin-Moo
    • Tunnel and Underground Space
    • /
    • v.21 no.1
    • /
    • pp.66-81
    • /
    • 2011
  • In this study, it was aimed to develop a thermal-hydraulic-mechanical coupled fracture mechanics code that models a fracture initiation, propagation and failure of underground rock mass due to thermal and hydraulic loadings. The development was based on a 2D FRACOD (Shen & Stephasson, 1993), and newly developed T-M and H-M coupled analysis modules were implemented into it. T-M coupling in FRACOD employed a fictitious heat source and time-marching method, and explicit iteration method was used in H-M coupling. The validity of developed coupled modules was verified by the comparison with the analytical result, and its applicability to the fracture initiation and propagation behavior due to temperature changes and hydraulic fracturing was confirmed by test simulations.

An experimental study on the behavior of tunnel excavated in a jointed mass by two-stage excavation (절리 지반에서 2단계로 굴착되는 터널의 거동특성에 대한 실험적연구)

  • Park, Seung-Jun;Kim, Dong-Gab;Lee, Sang-Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.6 no.4
    • /
    • pp.303-314
    • /
    • 2004
  • This study is intended to investigate the geotechnical behavior of jointed mass on tunnel excavation experimentally. Laboratory test were conducted in various conditions of distance from joint to tunnel and in-situ stress ratio ($K_0$). In case, the ground around the tunnel that has the joint angle $90^{\circ}$ generate the greatest influence in crown and far shoulder from joint. If the in-situ stress ratio is low, tangential stress of side wall that is opposite side of the joint is increased more than in crown. Otherwise in case, joint angle $45^{\circ}$, the generated compress stress is found out that left side of the tunnel of near the joint has influence on stability of the tunnel about 3 times than non-jointed rock.

  • PDF

Development of Stress, Load and Displacement Controlled Direct Shear Apparatus for Jointed Rock (응력, 하중, 변위제어 방식의 암석 절리면 전단시험기의 개발)

  • 김대영;천병식;서영호;이영남
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.471-477
    • /
    • 1999
  • A new stress, load and displacement controlled direct shear apparatus has recently been developed at the Hyundai Institute of Construction Technology This direct shear apparatus is capable of testing of rock joint under constant normal stiffness, constant normal stress or constant normal load boundary conditions. This paper describes this direct shear apparatus and illustrates results of shear tests at constant normal stress condition, constant normal load condition and constant normal stiffness condition with dental stones which have a same joint roughness and unconfined compressive strength.

  • PDF

Analysis of Discontinuity Distribution Property to Predict Rock Slope Failure (암반 사면의 파괴 예측을 위한 불연속면 분포 특성 분석)

  • 윤운상;김정환;배기훈
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.147-152
    • /
    • 1999
  • Distribution of fracture system is an important factor to analyse instability of jointed rock slope. In the most case of rock slopes, joint distribution properties are related to potential, shape, size and locality of slope failure. The purpose of this paper is to present an application of fracture characterization related to rock slope failure. Fracture data used in this study are collected by scanline survey. Two aspects of fracture characterization for rock slope are handled in this study First, In order to determine the potential and shape of slope failure, trace length of joints is considered as the weighting factor about collected orientation data. Second, Relationship between trace length and spacing is analysed to estimate failure location and size. The distribution of fracture system is directly influenced on wedge failure. It is effective to analyse the orientation of fractures by using weighting factors associated with the trace length of fractures rather than to analyse only that of fractures. It gives a conclusion that the wedge failure occurred along the peak of fracture density(or intensity) cycles.

  • PDF

A Study fo rthe determination of optimum cutangle for the heavily jointed rock slope (절리가 심하게 발달된 암반사면의 최적 절취각 고찰)

  • 홍예성;조태진;한공창
    • Tunnel and Underground Space
    • /
    • v.6 no.2
    • /
    • pp.166-174
    • /
    • 1996
  • Stability of rock slope is greatly affected by the geometry and strength of discontinuities developed in the rock mass. In this study an analytical method which is capable of analyzing the effect of relative orientation between the discontinuities and the slope face on the safety of slope by assessing their vector components was used to evaluate the stability and the maximum cut-angle for the proposed slope design. The results of computerized vector analysis revealed that slope area under investigation might be divided into 3 sections of different face directions. The safety factors for benches in each 3 sections were calculated using the limit-equilibrium theory. Then, by utilizing the concept of probabilistic risk analysis, the susceptibility of entire slope failure was estimated. Based on the distribution of safety factor in each bench, the maximum cut angle of each section could be selected differently ot achieve the permanent stability of the entire slope.

  • PDF

Interpretation of fracture network in Rock mass using borehole wall image (시추공벽 영상을 이용한 암반내 절리구조 해석)

  • 김재동;김종훈
    • Tunnel and Underground Space
    • /
    • v.8 no.4
    • /
    • pp.342-350
    • /
    • 1998
  • In this study, fracture network in rock mass was interpreted using borehole wall images obtained by televiewer. The orientation and JRC value of major joint set were evaluated adopting image analysis techniques, of which process were written in macro-program code. As linking JRC to joint stiffness using Barton-Bandis model, fracture network map was produced for application to jointed rock modelling in numerical analysis of underground structure.

  • PDF

A Study on Applicability of Pre-splitting Blasting Method According to Joint Frequency Characteristics in Rock Slope (암반사면의 절리빈도 특성에 따른 프리스플리팅 발파공법의 적용성 연구)

  • Kim, Shin;Lee, Seung-Joong;Choi, Sung-O.
    • Explosives and Blasting
    • /
    • v.28 no.2
    • /
    • pp.1-16
    • /
    • 2010
  • This study focuses on the phenomenon that the blast damaged zone developed on rock slope surfaces can be affected by joint characteristics rather than by explosive power when the pre-splitting is applied to excavate a jointed rock slope. The characteristics of rock joints on a slope were investigated and categorized them into 4 cases. Also an image processing system has been used for comparing the distribution pattern of rock blocks. From this investigation, it was found that the rock blocks bigger than 2,000 mm occupied 42% in the case of single joint set and it showed the well efficiency of pre-splitting blast. In cases of 2~3 parallel joint sets and 2~3 intersecting joint sets are developed on rock surfaces, the rock blocks in the range of 1,000~2,000 mm occupied 43.6% and 35.8%, respectively, and it showed that the efficiency of pre-splitting was decreased. When more than 3 joint sets are randomly developed, however, the rock blocks in the range of 250~500 mm occupied 35% and there was no block bigger than 1,000 mm. This denotes that the blasting with pre-splitting was not effective. The numerical analysis using PFC2D showed that the blast damaged zone in a rock mass could be directly influenced by the pre-splitting. It is, therefore, required to investigate the discontinuity pattern on rock surfaces in advance, when the pre-splitting method is applied to excavate jointed rock slopes and to apply a flexible blating design with a consideration of the joint characteristics.

A Study on the Methods to Calculate Mixed Weights of the Condition Evaluation of Rock Slope (절리암반비탈면의 상태평가항목에 대한 혼합가중치 산정방법에 관한 연구)

  • Byun, Yoseph;Choi, Jungchan;Seong, Joohyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.37-44
    • /
    • 2018
  • This study proposed the modified weighting values for jointed rock slopes. The studies on deduction of evaluation index and calculation of weighting, development of criteria for evaluation and evaluation models have been conducted through decision making techniques such as the Delphi method and the AHP method by many researchers. Because these decisions making techniques may be less objective, it is necessary to calculate reasonable weighting considering both an objective weighting and a subjective weighting simultaneously. In this study, utilizing the inspection data of jointed rock slopes, an objective weighting that the concept of entropy is applied was calculated. And the subjective weighting values by AHP technique was calculated based on the opinion of experts. And a modified weighting was suggested by combining the two. As a result, it was found that jointed rock slopes have higher weighting in artificial factors and the damage status items. In addition based on the finally suggested weighting (mixed weighting), the revised evaluation criteria could be presented by converting it into the evaluation score (76 points). And it is expected that it could be usefully utilized upon inspections on cutting slopes and safety diagnosis since objective and highly reliable criteria compared to the condition evaluation criteria that are currently used could be presented through the results of the study.

A Study on the Thermo-mechanical Behavior of Underground Openings in lsotropic and Structurally Snisotropic Rock Masses (등방 및 이방성 암반내 공동의 열역학적 거동에 관한 전산모델연구)

  • 문현구;주광수
    • Tunnel and Underground Space
    • /
    • v.1 no.2
    • /
    • pp.181-203
    • /
    • 1991
  • The effects of geologic structures such as rock joins and bedding planes on the thermal conductivity of a discontinuous rock mass are studied. The expressions for the equivalent thermal conductivities of jointed rock masses are derived and found to be anisotropic. The degree of anisotropy depends primarily on the thermal properties contrast between the joint phase and surrounding intact rock, the joint density expressed as volume fraction and the inclination angle of the joint. Within the context of 2-dimensional finite element heat transfer scheme, the isotherms around a circular hole are analyzed for both the isotropic and anisotropic rock masses in 3 different thermal boundary conditions. i.e. temperature, heat flux and convection boundary conditions. The temperature in the stratified anisotripic rock mass is greatly influenced by the thermal properties of the rock formation in contact with the heat source. Using the excavation-temperature coupled elastic plastic finite element method, analyzed is the thermo-mechanical stability of a circular opening subjected to 10$0^{\circ}C$ at a depth of 527m. It is found that the thermal stress concentration was enough to deteriorate the stability and form a plastic yield zone around the opening, in contrast to the safety factor greater than 2 resulted form the excavation-only analysis.

  • PDF