• Title/Summary/Keyword: Joint profile

Search Result 149, Processing Time 0.024 seconds

EHL Analysis of the Ball Joint Contact in a Reciprocating Compressor (왕복동형 압축기 볼 조인트 접촉의 탄성유체윤활 해석)

  • 김태종
    • Tribology and Lubricants
    • /
    • v.19 no.2
    • /
    • pp.85-93
    • /
    • 2003
  • In this study, a multigrid multi-integration method has been used to solve the steady-state, elastohydrodynamic lubrication (EHL) point contact problem of a ball joint mechanism used in small reciprocating compressors. Pressure and film thickness profiles have been calculated at minimum and maximum Moes M parameter conditions during one revolution of crankshaft. The effects of various lubricant viscosities, loads, ball velocities, elastic modulli, and radii of curvature on the calculated pressure distribution and film thicknesses have been investigated. The results indicate that the viscosity of lubricant, the sliding velocity of ball, and the reduced radius of curvature have considerable effects on the minimum and central film thicknesses. Solutions obtained with the multigrid analysis are compared with results calculated according to the Hamrock & Dowson relations for the minimum and central film thicknesses.

Rational designing of double-sided nail plate joints using the finite element method

  • Zhou, Tinozivashe;Guan, Z.W.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.2
    • /
    • pp.239-257
    • /
    • 2008
  • Double-sided punched metal plate timber fasteners present projections on both sides, which offer improved joint fire resistance and better joint aesthetics. In this paper, 3-D nonlinear finite element models were developed to simulate double-sided nail plate fastener timber joints. The models, incorporating orthotropic elasticity, Hill's yield criterion and elasto-plasticity and contact algorithms, are capable of simulating complex contact between the tooth and the timber and between the base plate and the timber in a fastener. Using validated models, parametric studies of the double-sided nail plate joints was undertaken to cover the tooth length and the tooth width. Optimal configuration was assumed to have been attained when increase in nail plate tooth width did not result in a raise in joint capacity, in conjunction with the optimum tooth length. This paper presents the first attempt to model and optimise tooth profile of double-sided nail plate fastener timber joints, which offers rational designs of such fasteners.

Determination of Adequate Solder Volume using 3D Solder Joint Configuration in SMT (3차원 납 접합부 형상을 이용한 표면실장기술의 적정 납량 결정)

  • 최동필;김성관;유중돈
    • Journal of Welding and Joining
    • /
    • v.14 no.2
    • /
    • pp.71-78
    • /
    • 1996
  • In order to rpovide proper SMT design criteria in a systematic way, a mathematical formulation has been developed to predict the configuration of the solder fillet formed between the gullwing type lead and rectangular pad. Effects of SMT design parameters such as the solder volume and pad dimension on the solder profile are investigated using the FEM that calculates the 3D configuration by minimizing the energy due to surface tension and gravity in the equilibrium state. Design criteria of QFP and SOP are illustrated by plotting the acceptable range of the solder volume with respect to the length and width ratios of the pad and lead. The results show that the acceptable design range increases with increase in the pad length and width. The pad length has more significant effects on design criteria compared with the pad width, and Bond number can be utilized to predict the joint quality.

  • PDF

A Statistical Study of CMP Process in Various Scales (CMP 프로세스의 통계적인 다규모 모델링 연구)

  • 석종원
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.12
    • /
    • pp.2110-2117
    • /
    • 2003
  • A physics-based material removal model in various scales is described and a feature scale simulation for a chemical mechanical polishing (CMP) process is performed in this work. Three different scales are considered in this model, i.e., abrasive particle scale, asperity scale and wafer scale. The abrasive particle and the asperity scales are combined together and then homogenized to result in force balance conditions to be satisfied in the wafer scale using an extended Greenwood-Williamson and Whitehouse-Archard statistical model that takes into consideration the joint distribution of asperity heights and asperity tip radii. The final computation is made to evaluate the material removal rate in wafer scale and a computer simulation is performed for detailed surface profile variations on a representative feature. The results show the dependence of the material removal rate on the joint distribution, applied external pressure, relative velocity, and other operating conditions and design parameters.

Orthognathic treatment of facial asymmetry due to temporomandibular joint ankylosis

  • Gulsen, Ayse;Sibar, Serhat;Ozmen, Selahattin
    • Archives of Plastic Surgery
    • /
    • v.45 no.1
    • /
    • pp.74-79
    • /
    • 2018
  • The aim of this study was to present a case series of the orthognathic treatment of facial asymmetry due to temporomandibular joint (TMJ) ankylosis and to characterize the current treatment modalities through a literature review. Four patients who presented with facial asymmetry due to TMJ ankylosis between 2010 and 2014 were included in this study. TMJ ankylosis was surgically treated before bimaxillary surgery with advancement genioplasty in some of the cases. In 2 cases, 3-dimensional (3D) models were used for diagnosis and treatment planning, as 3D models are very important tools for planning surgical maneuvers. Aesthetically pleasant facial symmetry and a good facial profile were obtained in all the cases.

Influence of the Welding Speeds and Changing the Tool Pin Profiles on the Friction Stir Welded AA5083-O Joints

  • El-Sayed, M.M.;Shash, A.Y.;Abd Rabou, M.
    • Journal of Welding and Joining
    • /
    • v.35 no.3
    • /
    • pp.44-51
    • /
    • 2017
  • In the present study, AA 5083-O plates are joined by friction stir welding technique. A universal milling machine was used to perform the welding process of the work-pieces which were fixed on the proper position by a vice. The joints were friction stir welded by two tools with different pin profiles; cylindrical threaded pin and tapered smooth one at different rotational speed values; 400 rpm and 630 rpm, and different welding speed values; 100 mm/min and 160 mm/min. During FSW of each joint, the temperature was measured by infra-red thermal image camera. The welded joints were inspected by visually as well as by the macro- and microstructure evolutions. Furthermore, the joints were tested for measuring the hardness and the tensile strength to study the effect of changing the FSW parameters on the mechanical properties. The results show that increasing the rotational speed results in increasing the peak temperature, while increasing the welding speed results in decreasing the peak temperature for the same tool pin profile. Defect free welds were obtained at lower rotational speed by the threaded tool profile. Moreover, the threaded tool pin profile gives superior mechanical properties at lower rotational speed.

Microstructure and Tensile Properties of SS400 Carbon Steel and SUS430 Stainless Steel Butt Joint by Gas Metal Arc Welding

  • Poonnayom, Pramote;Chantasri, Sakchai;Kaewwichit, Jesada;Roybang, Waraporn;Kimapong, Kittipong
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.1
    • /
    • pp.61-67
    • /
    • 2015
  • The application of SS400 carbon steel and AISI430 ferritic stainless steel joint has been increased in industries because of the advantage of both metals was able to increase the service lifetime of the important structures. Therefore, a fusion welding process that could produce a sound weld and good joint properties should be optimized. This research is aimed to weld a butt joint of SS400 carbon steel and AISI430 ferritic stainless steel using Gas Metal Arc Welding (GMAW) welding process and to study the effects of welding parameters on joint properties. The experimental results were concluded as follows. The optimized welding parameter that produced the tensile strength of 448 MPa was the welding current of 110A, the welding speed of 400 mm/min and the mixed gas of $80%Ar+20%CO_2$. Increase of the welding current affected to increase and decrease the tensile strength of the joint, respectively. Lower welding current produced the incomplete bonding of the metals and indicated the low tensile strength. Microstructure investigation of the welded joint showed a columnar grain in the weld metal and a coarse grain in the heat affected zone (HAZ). The unknown hard precipitated phases were also found at the grain boundaries of the weld metal and HAZ. The hardness profile did not show the difference of the hardness on the joint that was welded by various welding currents but the hardness of the weld metal was higher than that of the other location.

Joint Diversion Analysis Using the Dispersion Characteristics of Love Wave and Rayleigh Wave (I) - Constitution of Joint Diversion Analysis Technique - (러브파와 레일리파의 분산특성을 이용한 동시역산해석(I) - 동시역산해석기법의 구성 -)

  • Lee Il-Wha;Joh Sung-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.4
    • /
    • pp.145-154
    • /
    • 2005
  • Love wave and Rayleigh wave are the major elastic waves belonging to the category of the surface wave. Those waves are used to determine the ground stiffness profile using their dispersion characteristics. The fact that Love wave is not contaminated by P-wave makes Love wave superior to Rayleigh wave and other body waves. Therefore, the information that Love wave carries is more distinct and clearer than that of others. Based on theoretical research, the joint inversion analysis that uses the dispersion information of both Love and Rayleigh wave was proposed. This analysis consists of the forward modeling using transfer matrix, the sensitivity matrix for evaluating the ground system and DLSS (Damped Least Square Solution) as an inversion technique. The technique of joint inversion uses the dispersion characteristics of Love wave and Rayleigh wave simultaneously making the sensitivity matrix. The sensitivity matrix was used for inversion analysis repeatedly to find the approximate ground stiffness profile. The purpose of the joint inversion analysis is to improve accuracy and convergency of inversion results by utilizing that frequency contribution of each wave is different.

Generation of Roughness Using the Random Midpoint Displacement Method and Its Application to Quantification of Joint Roughness (랜덤중점변위법에 의한 거칠기의 생성 및 활용에 관한 연구)

  • Seo, Hyeon-Kyo;Um, Jeong-Gi
    • Tunnel and Underground Space
    • /
    • v.22 no.3
    • /
    • pp.196-204
    • /
    • 2012
  • Quantification of roughness plays an important role in modeling strength deformability and fluid flow behaviors of rock joints. A procedure was suggested to simulate joint roughness, and characteristics of the roughness was investigated in this study. Stationary fractional Brownian profiles with known input values of the fractal parameter and other profile properties were generated based on random midpoint displacement method. Also, a procedure to simulate three dimensional roughness surface was suggested using the random midpoint displacement method. Selected statistical roughness parameters were calculated for the generated self-affine profiles to investigate the attribute of roughness. Obtained results show that statistical parameters applied in this study were able to consider correlation structure and amplitude of the profiles. However, effect of data density should be tackled to use statistical parameters for roughness quantification.

Selection of Optimal Welding Condition in Root-pass Welding of V-groove Butt Joint (맞대기 V-그루브 이음 초층 용접에서 최적의 용접조건 선정)

  • Yun, Seok-Chul;Kim, Jae-Woong
    • Journal of Welding and Joining
    • /
    • v.27 no.1
    • /
    • pp.95-101
    • /
    • 2009
  • In case of manufacturing the high quality welds or pipeline, the full penetration weld has to be made along the weld joint. Thus the root pass welding is very important and has to be selected carefully. In this study, an experimental method for the selection of optimal welding condition was proposed in the root pass welding which was done along the V-grooved butt weld joint. This method uses the response surface analysis in which the width and height of back bead were chosen as the quality variables of the weld. The overall desirability function, which is the combined desirability function for the two quality variables, was used as the objective function for getting the optimal welding condition. In the experiments, the target values of the back bead width and the height are 6mm and zero respectively for the V-grooved butt weld joint of 8mm thickness mild steel. The optimal welding conditions could predict the back bead profile(bead width and height) as 6.003mm and -0.003mm. From a series of welding test, it was revealed that a uniform and full penetration weld bead can be obtained by adopting the optimal welding condition which was determined according to the method proposed.