• Title/Summary/Keyword: Joint position reproduction

Search Result 12, Processing Time 0.025 seconds

Difference of Proprioceptive Sense at Elbow Joint According to Measurement Methods (팔굽관절에서 측정방법에 따른 고유수용성감각 차이)

  • Lee, Jung-Ah;Kim, Duk-Hwa;Shin, Hwa-Kyung;Choi, Kyu-Hwan;Kwon, Oh-Yun
    • Physical Therapy Korea
    • /
    • v.10 no.3
    • /
    • pp.63-70
    • /
    • 2003
  • The purpose of this study was to compare the difference of joint position sense between measurements. Fourteen healthy male subjects were recruited for this study. The elbow joint position senses were measured using angle reproduction test. The elbow joint position sense was assessed with three experimental conditions: ipsilateral reproduction test in open-chain condition, contralateral reproduction test in open-chain condition, ipsilateral reproduction test with weight in open-chain condition and ipsilateral reproduction test in closed-chain condition. The angular difference between stimulus position and the reproduced position (angular error) was calculated in all testing conditions to examine the accuracy of the joint position sense. One way ANOVA was used to compare the error angles in all experimental conditions. The error angles between measurements were significantly different in elbow joint. The error angles was smallest in ipsilateral reproduction test with weight in open-chain condition and was greatest in the contralateral reproduction test in open-chain condition. Findings of this study indicate that testing methods, types of task, existence of resistance should be considered in clinical assessment for the joint position sense.

  • PDF

Effect of Muscle Fatigue on the Proprioception by the Taekwondo Training Type

  • Seo, Byoung-Do;Kim, Hui-Jae;Ju, Joung-Youl
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.15 no.3
    • /
    • pp.1-9
    • /
    • 2020
  • PURPOSE: This study examined the effects of muscle fatigue on proprioception in the type of taekwondo training, causing injury to taekwondo athletes. METHODS: The subjects were divided into Taekwondo Kyorugi athletes (n = 14) and Taekwondo Poomsae athletes (n = 14). After inducing muscle fatigue to the subjects, the joint position sense (JPS) and the force reproduction sense (FRS) were measured before and immediately after the induction of muscle fatigue. RESULTS: Studies have shown no significant impact on the JPS and FRS caused by muscle fatigue induced by Poomsae and Kyorugi (p > .05). The JPS, however, showed a significant difference before and after Kyorugi (p < .05). The FRS showed significant differences before and after Poomsae (p < .05). Through this study, the injuries to taekwondo athletes appear to be influenced by the joint position and force reproduction. Moreover, the injury appears to affect the joint position sense in Kyorugi athletes and the force reproduction sense in Poomsae athletes. CONCLUSION: The results will contribute to injury prevention and athlete protection. In addition, the information can be used as basic data for the development of sports injuries prevention and rehabilitation programs for Taekwondo athletes. Research is needed on the customized management of sports methods and self-care to prevent sports damage, considering the athletic characteristics of the taekwondo athletes in the future.

Effects of Proprioceptive Neuromuscular Facilitation and Visual-Feedback based Joint Position Reproduction Training on the Level of Ankle Proprioception and One-leg Standing Balance Ability (고유 수용성 신경근 촉진법과 시각 되먹임 기반 관절재현 훈련이 발목관절의 고유 수용성 감각 수준과 한 발 서기 균형 능력에 미치는 영향)

  • Ree, Jae Sun;Kim, Jongho;Kang, Minjoo;Hwang, Jisun;Hwang, Seonhong
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.81-93
    • /
    • 2022
  • Proprioception training has been considered a secondary method to facilitate postural control ability. This study investigated the effects of two different proprioception training methods - the proprioceptive neuromuscular facilitation (PNF) and visual feedback-based joint position and force reproduction (VF) - on postural control advancements. Sixteen healthy people volunteered for this study, and they randomly grouped two. Each group participated in the PNF and VF training for three weeks. We evaluated each subject's proprioception levels and balance ability before and after the training. We used a clinometer and electromyogram (EMG) for VF training. The joint position reproduction test was also used to evaluate the position and force aspects of the proprioception level. We analyzed the trajectory of the center of pressure (COP) while subjects were standing on the firm floor and balance board with one leg using a pressure mat. The improvement of the position aspect of the proprioception level of the VF group (4.93±4.74°) was larger than that of the PNF group (-0.43±2.08°) significantly (p=0.012). The improvement of the anterior-posterior COP velocity of the PNF group (0.01±0.01 cm/s) was larger than that of VF group(0.002±0.01 cm/s) significantly (p=0.046). Changes of position error in the PNF group (rho=0.762, p=0.028) and tibialis anterior force reproduction error in the VF group showed a significantly strong relationship with balance ability variables. These results showed that different PNF and VF have different effects on improving two aspects of proprioception and their relationship with the balance ability. Therefore, these results might be useful for selecting proprioception or balance rehabilitation considering the clinical and patients' situation.

Comparison of the Joint Position Sense at Knee Joint According to Surface Conditions (지지 면 조건에 따른 무릎관절의 관절 위치 재현능력 비교)

  • Hong, Young-Ju;Weon, Jong-Hyuck;Kwon, Oh-Yun
    • Physical Therapy Korea
    • /
    • v.14 no.3
    • /
    • pp.90-96
    • /
    • 2007
  • The purpose of this study was to compare the joint position sense at the knee joint at 3 different surface conditions by using the active knee joint angle reproduction test in the standing position. Twenty healthy volunteers (10 males and 10 females) age 20~29 years were recruited for this study. The knee joint position senses were assessed at three different surface conditions: on the floor (stable condition), TOGU (soft condition), and seat fit (unstable condition) in a closed kinetic chain. Testing orders were selected randomly. The absolute angle error was defined as the absolute difference between target angles ($30^{\circ}{\sim}45^{\circ}$ knee flexion) and subject perceived angle of the knee flexion. One way ANOVA was used to compare the absolute angle of error among 3 different conditions. The Independent t-test was used to compare the absolute angle of error between male and female. The error angles were significantly different among surface conditions ($1.3^{\circ}{\pm}1.2^{\circ}$ for the floor, $2.1^{\circ}{\pm}0.9^{\circ}$ for the TOGU, and $4.4^{\circ}{\pm}1.8^{\circ}$ for the seat fit, p<.05). There was no significant difference in error angle between male and female. In conclusion, the joint position sense of the knee joint in the closed kinetic chain decreased at unstable surface conditions. The result of this study indicates that surface conditions should be considered when assessing and training the joint position sense of the knee joint in clinical setting.

  • PDF

A Comparison of the Proprioception of the Knee Joint at Different Conditions in 20 Years of Age (20대 연령에서 다양한 조건에 따른 슬관절의 고유수용성 감각 비교)

  • Kwon, Oh-Yun;Choi, Houng-Sik
    • Journal of Korean Physical Therapy Science
    • /
    • v.3 no.3
    • /
    • pp.15-23
    • /
    • 1996
  • The purpose of this study to evaluate and compare the proprioception of the dominant knee joint at different conditions in normal 20 years of age. The pripriocption was measured at sitting, supine, prone position with the eyes opened and the eyes closed. All were assessed with and without a knee brace around the knee by reproduction the position to which a joint has previously been placed. In this study, 24 rehabilitation therapy major students were assessed at Hansoe University. In this study applied the paired t-test and 1-way ANOVA to determine the statistical significance of results at 0.05 level of significance. The error average of proprioception was $4.65{\pm}2.95^{\circ}$ with the eyes closed and $4.08{\pm}1.14^{\circ}$ with the eyes opened in sitting position, $5.56{\pm}3.18^{\circ}$ with the eyes closed and $4.98{\pm}2.99^{\circ}$ with the eyes opened in supine position and $5.60{\pm}1.64^{\circ}$ with the eyes closed and $4.87{\pm}2.16^{\circ}$ with the eyes opened in prone position. There was no significantly difference the error average between the eyes opened group and the eyes closed group. There was no significantly difference the error average among the three positions. The error average decreased significantly in knee brace group at all conditions.

  • PDF

The Effect of Continuous Passive Motion and Continuous Active Motion on Joint Proprioception After Total Knee Replacement (슬관절전치환술 후 연속수동운동(CPM)과 연속능동운동(CAM) 적용이 관절 고유수용감각에 미치는 영향)

  • Yang, Jin-Mo;Kim, Suhn-Yeop
    • Journal of Korean Physical Therapy Science
    • /
    • v.17 no.1_2
    • /
    • pp.41-52
    • /
    • 2010
  • Purpose: The purpose of this study was to compare the effects of continuous passive motion(CPM) and continuous active motion(CAM) on proprioception of the knee after total knee replacement(TKR). Methods: Twenty patients with TKR were randomly allocated into two groups, the CPM group(n=10) and the CAM group(n=10). All subjects were evaluated for levels of pain, passive range of motion and angle reproduction of the knee. An angle reproduction test was used to assess the proprioceptive deficit. Two types of angle reproduction test were used: a passive angle reproduction(PAR) test and an active angle reproduction(AAR) test. The relevant examinations were performed before and after intervention(on the 5th day and the 10th day). The statistical significance were calculated using a t-test and a one-way repeated ANOVA. Results: A pre-intervention significant difference was not found between the two groups. Significantly better results were before and after the intervention at 10 days, for the PAR(flexion direction) test; however, only in the CAM group. There were no significant difference, either before or after the intervention, for the AAR test(flexion and extension direction) in both group. Both groups experienced similar levels of pain and passive range of knee motion before and after the intervention. Conclusion: This study revealed that CAM was a better effect to restore position sense of the knee joint after TKR.

  • PDF

The Effects of Repeated Passive Movement of Different Velocities on Knee Joint Position Sense in Patients With Post-Stroke Hemiplegia

  • Jo, Su-Jin;Choi, Jong-Duk
    • Physical Therapy Korea
    • /
    • v.19 no.3
    • /
    • pp.98-104
    • /
    • 2012
  • The aim of this study was to examine the effects of repeated passive movement (RPM) of different velocities on the improvement of knee joint position sense (JPS) in post-stroke patients with hemiplegia, thereby investigate the possibility of clinical application in the initial stage of rehabilitation for patients with post-stroke hemiplegia. Thirteen hemiplegic patients participated in this study. For the subjects' knee JPS tests, a passive angle reproduction test and an active angle reproduction test were performed prior to and after the intervention, which involved 30 repetitions of passive full-range-of-motion flexion and extension exercise of the knee joints at randomized degrees of $0^{\circ}/s$, $45^{\circ}/s$, and $90^{\circ}/s$. Paired t-test analysis was done in order to compare changes in the pre- and post-intervention knee JPS. One-way repeated analysis of variance was used in order to compare changes in JPS after intervention at three different movement velocities. The level of significance was set at .05. The result was that the subjects' post-intervention knee JPS significantly improved after the RPM exercise at a $45^{\circ}/s$ and a $90^{\circ}/s$ relative to the RPM exercise $0^{\circ}/s$ (p<.05). JPS changes with RPM intervention at the rapid velocity of $90^{\circ}/s$ were most increased, suggesting the most effective enhancement in knee JPS is with intervention at the velocity (p<.05). Therefore, RPM intervention at a half or higher velocity improved stroke patients' knee JPS. During the initial stage of rehabilitation for patients with post-stroke hemiplegia, the efficient application of the RPM exercise at a half or higher velocity will be possible.

The Effect of Graded Exercise-Induced Fatigue on Position Sense of the Knee (근피로를 유발하는 운동강도 변화가 슬관절의 위치감각 인지에 미치는 영향)

  • Yi, Chung-Hwi;Choi, Jong-Duk;Lee, Kang-Noh;Lee, Dong-Ryul;Choi, Jae-Myung
    • Physical Therapy Korea
    • /
    • v.6 no.3
    • /
    • pp.22-37
    • /
    • 1999
  • It was recently reported that exercise-induced fatigue is related to joint position sense although some controversy remains. The purposes of this study were to examine the effect on the accuracy of reproducing the knee angles after a fatiguing isokinetic quadriceps exercise at four different levels (10%, 30%, 50%, and 70% of maximal force) and to find the optimal exercise level without causing knee joint proprioception impairment. Forty healthy women, ages 19 to 27, were randomly assigned to four experimental groups. Before and after the exercise, accuracy of positioning with respect to auditory feedback for specific angles was estimated by calculating the mean errors between specific angles and reproduction angles. Fatigue was measured by EMG signals displayed by a frequency spectrum analysis during the quadriceps exercise. Results showed that there was no significant difference in accuracy of the knee joint positioning sense following the exercises in group 1, group 2, and group 3 (10%, 30%, and 50% of maximal force, respectively); the exception being group 4 (70%). Fatigue level was significantly increased in group 4 but there were no significant increases of fatigue level in group 1, group 2, or group 3. The results concluded that the optimal exercise level to acquire the therapeutic exercise effectiveness without position sense impairment was at 50% of maximal force. Further studies using large sample size and patient groups with poor knee joint proprioception would be needed to confirm this conclusion and to clarify the possibility of clinical applications.

  • PDF

Energy Optimization of a Biped Robot for Walking a Staircase Using Genetic Algorithms

  • Jeon, Kweon-Soo;Park, Jong-Hyeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.215-219
    • /
    • 2003
  • In this paper, we generate a trajectory minimized the energy gait of a biped robot for walking a staircase using genetic algorithms and apply to the computed torque controller for the stable dynamic biped locomotion. In the saggital plane, a 6 degree of freedom biped robot that model consists of seven links is used. In order to minimize the total energy efficiency, the Real-Coded Genetic Algorithm (RCGA) is used. Operators of genetic algorithms are composed of a reproduction, crossover and mutation. In order to approximate the walking gait, the each joint angle is defined as a 4-th order polynomial of which coefficients are chromosomes. Constraints are divided into equality and inequality. Firstly, equality constraints consist of position conditions at the end of stride period and each joint angle and angular velocity condition for periodic walking. On the other hand, inequality constraints include the knee joint conditions, the zero moment point conditions for the x-direction and the tip conditions of swing leg during the period of a stride for walking a staircase.

  • PDF

Trajectory Optimization for Biped Robots Walking Up-and-Down Stairs based on Genetic Algorithms (유전자 알고리즘을 이용한 이족보행 로봇의 계단 보행)

  • Jeon Kweon-Soo;Kwon O-Hung;Park Jong-Hyeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.4 s.181
    • /
    • pp.75-82
    • /
    • 2006
  • In this paper, we propose an optimal trajectory for biped robots to move up-and-down stairs using a genetic algorithm and a computed-torque control for biped robots to be dynamically stable. First, a Real-Coded Genetic Algorithm (RCGA) which of operators are composed of reproduction, crossover and mutation is used to minimize the total energy. Constraints are divided into equalities and inequalities: Equality constraints consist of a position condition at the start and end of a step period and repeatability conditions related to each joint angle and angular velocity. Inequality constraints include collision avoidance conditions of a swing leg at the face and edge of a stair, knee joint conditions with respect to the avoidance of the kinematic singularity, and the zero moment point condition with respect to the stability into the going direction. In order to approximate a gait, each joint angle trajectory is defined as a 4-th order polynomial of which coefficients are chromosomes. The effectiveness of the proposed optimal trajectory is shown in computer simulations with a 6-dof biped robot that consists of seven links in the sagittal plane. The trajectory is more efficient than that generated by the modified GCIPM. And various trajectories generated by the proposed GA method are analyzed in a viewpoint of the consumption energy: walking on even ground, ascending stairs, and descending stairs.