• Title/Summary/Keyword: Joint condition

Search Result 1,241, Processing Time 0.029 seconds

Strength Evaluation of I-Type Connecting System on a Segmental Retaining Reinforced Wall Consideration the Backfill Settlement (배면침하 영향을 고려한 보강토 옹벽의 I형 연결시스템 강도 평가)

  • Moon, Hee-Jung;Han, Jung-Geun;Lee, Jong-Young;Cho, Sam-Deok;Lee, Kwang-Wu
    • Journal of the Korean Geosynthetics Society
    • /
    • v.6 no.1
    • /
    • pp.27-32
    • /
    • 2007
  • This paper describes the applicability of geogrid with I-type coupling system, which permits vertical displacement on back fill ground of the reinforced retaining wall and also minimize the damage between block and geogrid. The improvement of coupling method allowed the reduction of approximately 700 mm in the existing geogrid, and as a result, the tensile strength at the coupling joint showed approximately 53% of the maximum tensile strength. It is expected from the laboratory investigations that the coupling strength of geogrid with the combination of in-situ supporting material should be predominant in the field condition.

  • PDF

Performance Analysis of Linearly Constrained, Modified MMSE Detection for DS-CDMA Systems in Fading Channels (페이딩 채널에서 DS-CDMA 시스템을 위한 선형제약 변형 MMSE 검출의 성능 해석)

  • Lee Seo young;Kim Seong Rag;Lim Jong Seul;Ann Seong Joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.10A
    • /
    • pp.1159-1166
    • /
    • 2004
  • This paper follows up the previous work on the linearly constrained, modified minimum mean-squared error(MMSE) detection for direct-sequence code-division multiple-access DS-CDMA) systems in fading channels. We find a condition to avoid the breakdown of joint modified MMSE detection and pilot symbol-aided channel estimation (PSACE). The linearly constrained, modified MMSE solution is theoretically shown to be robust against time variations in Rayleigh fading channels. This fact is consistent with the simulation results. We also show that under some conditions the linearly constrained, modified MMSE detection maximizes the output signal-to-interference-plus-noise ratio.(SINR)

The Study on 3-Axes Acceleration Impact of Lower Limbs Joint during Gait (보행 시 하지 관절의 3축 충격가속도에 관한 연구)

  • Oh, Yeon-Ju;Lee, Chang-Min
    • Journal of the Ergonomics Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.33-39
    • /
    • 2009
  • Impact force to a body during walking depends on walking speed, walking steps, the condition of the floors and shoes, and weight. The ground reaction force and the foot pressure can be measured instantaneous force easily, but it's difficult to find out the amount of transferring forces to the body. On the other hand, the acceleration has an advantage for analyzing the amount of transferring forces. However, most of studies about impact forces to the ground reaction during exercise have been limited to analyze instantaneous forces. The important thing is to evaluate characters and the amount of the impact force rather than the magnitude. Therefore, this study analyze the impact force using 3 axis acceleration in three dimensions (x; anterior-posterior, y; left-right and z; longitudinal axis) using three axis acceleration. As working speed increased, impact forces increased significantly. Impact forces on x axis and z axis are higher at lower limb than that of upper limb. However, impact force at the knee is higher than that of other parts on y axis regardless of walking speed significantly. In addition, relations of the impact forces as interaction of experiment factors as well as effect of each factor are analyzed.

Weldability and properties of lap joints by pin FSW with 1050 Al sheet (1050 Al판재의 핀 마찰 교반용접에 의한 실험적 연구)

  • Jang, Seok-Ki;Park, Jong-Seek;Han, Min-Su
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.394-400
    • /
    • 2007
  • The properties and weldability of lap joints by PFSW with 1050 Al sheet was investigated according to tool shape. dimension and welding condition. Tensile shear test was carried out for lap jointed specimen, and the hardness in the joint regions was examined. Moreover interfacial joining length, metallograph and failure location of the lap-jointed cross section were discussed. Two tool types were a simple cylindrical type and a notched cylindrical type. Under joining conditions such as plunging depth of 2.2mm. rotating speed of 1600rpm and dwelling time of 3s, the tensile shear strength of lap-jointed specimen by the notched type tool was superior to that by simple cylindrical type tool. The maximum tensile shear load of lap jointed specimen was 5807N. Optimal dimensions of the notched type tool were as follows : diameters of the shoulder and pin were $18{\phi}mm$ and $10{\phi}mm$, and pin length was 2.2mm.

Effect of Ankle Taping Type and Jump Height on Balance during Jump Landing in Chronic Ankle Instability

  • Kim, Mikyoung;Kong, Byungsun;Yoo, Kyungtae
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.11 no.2
    • /
    • pp.2077-2089
    • /
    • 2020
  • Background: Chronic ankle instability is a common injury that decreases balance and negatively affects functional movements, such as jumping and landing. Objectives: To analyze the effect of taping types and jump heights on balance with eyes open and closed during jump landings in chronic ankle instability. Design: Within-subject design. Methods: The study involved 22 patients with chronic ankle instability. They performed both double-leg and single-leg drop jump landings using three conditions (elastic taping, non-elastic taping, and barefoot) on three different jump platforms (30, 38, and 46 cm). Balance was measured using the Romberg's test with eyes open and closed. Results: Interaction effect was not statistically significant. Balance with eyes open and closed was significantly improved in both the elastic taping and non-elastic taping conditions compared to the barefoot condition. There was no significant difference according to the jump height. Conclusion: Individuals with chronic ankle instability demonstrated increased balance ability with eyes open and closed when jump landing. Elastic taping and non-elastic taping on the ankle joint can positively affect balance during landing in individuals with chronic ankle instability.

A Study on the Relation Between the Robot System Dynamic Constraints and Variable Structure Control Parameters (로보트 시스템의 동력학적 제한 조건과 가변구조 제어 파라메타의 상관관계에 관한 연구)

  • Lee, Hong-Kyu;Lee, Bum-Hee;Choi, Keh-Kun
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.3
    • /
    • pp.70-78
    • /
    • 1989
  • In the control of the robot system using the variable structure control(VSC) method, up to these days the advantage of the VSC method has not been applied effectively because the parameters are selected arbitrarily by the existence condition of sliding mode without a precise analysis about the VSC parameters. This paper reveals the relation between dynamic constraints and the VSC parameters of robot system, and analyzes the effect on the trajectory of the joint angle and the hand when the analytical result of the relation is applied to the robot system control. The result of the analysis in this paper is applied effectively to the path tracking control and the trajectory planning using the VSC method.

  • PDF

A Case of Charcot Neuroarthropathy Improved by Korean Medical Treatment Combined with Shudihuangkushen-tang and Haifu-san Wet Dressing (숙지황고삼탕(熟地黃苦蔘湯)과 해부산(海浮散) 습윤드레싱을 병행한 한방치료를 통한 샤르코 신경관절병증 환자 호전 1례)

  • Lee, Hyun-Bum;Lee, Chang-Won;Lim, Eun-Chul
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.33 no.3
    • /
    • pp.125-137
    • /
    • 2020
  • Objectives : Charcot neuroarthropathy(CN) is condition characterized by a progressive joint deformation with sensorial and autonomic neuropathy. This study is to report a case of CN improved by Korean medical treatment. Methods : The patient's left foot with CN was treated by Shudihuangkushen-tang, Haifu-san wet dressing, acupuncture and herbal acupuncture. We evaluated the progress by laboratory investigation, radiograph and photograph comparison, visual analogue scale(VAS) of edema and pain sensation. Results : After treatment, VAS score of edema dropped from 6 to 1, of pain sensation slightly improved from 0 to 1. Average blood sugar level decreased and rebounded, but Hemoglobin A1c level improved from 9.5% to 7.7%. Improvement of the left foot was recognized from the radiograph and photograph comparison. Conclusions : This study suggests Korean medicine is effective in treating CN, especially using Shudihuangkushen-tang, Haifu-san wet dressing.

Reconstruction with Retrograde IM Nail and Pasteurized Bone in Distal Tibial Osteosarcoma - A Case Report - (원위 경골 골육종의 역행적 골수내 정과 저온 열처리 골을 이용한 재건 - 증례 보고 -)

  • Song, Won-Seok;An, Joon-Hwan;Lee, Soo-Yong;Park, Jong-Hoon;Cho, Wan-Hyung;Ko, Han-Sang;Jeon, Dae-Geun
    • The Journal of the Korean bone and joint tumor society
    • /
    • v.12 no.2
    • /
    • pp.161-164
    • /
    • 2006
  • Malignant bone tumor in distal tibia is a rare condition which has been treated by amputation. Although widely accepted, limb salvage surgery in this area poses difficulties with respect to reconstruction. We present one patient with distal tibial osteosarcoma treated by performing limb salvage and reconstructing with retrograde IM nail and pasteurized bone.

  • PDF

Sensitivity analysis for finite element modeling of humeral bone and cartilage

  • Bola, Ana M.;Ramos, A.;Simoes, J.A
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.3 no.2
    • /
    • pp.71-84
    • /
    • 2016
  • The finite element method is wide used in simulation in the biomechanical structures, but a lack of studies concerning finite element mesh quality in biomechanics is a reality. The present study intends to analyze the importance of the mesh quality in the finite element model results from humeral structure. A sensitivity analysis of finite element models (FEM) is presented for the humeral bone and cartilage structures. The geometry of bone and cartilage was acquired from CT scan and geometry reconstructed. The study includes 54 models from same bone geometry, with different mesh densities, constructed with tetrahedral linear elements. A finite element simulation representing the glenohumeral-joint reaction force applied on the humerus during $90^{\circ}$ abduction, with external load as the critical condition. Results from the finite element models suggest a mesh with 1.5 mm, 0.8 mm and 0.6 mm as suitable mesh sizes for cortical bone, trabecular bone and humeral cartilage, respectively. Relatively to the higher minimum principal strains are located at the proximal humerus diaphysis, and its highest value is found at the trabecular bone neck. The present study indicates the minimum mesh size in the finite element analyses in humeral structure. The cortical and trabecular bone, as well as cartilage, may not be correctly represented by meshes of the same size. The strain results presented the critical regions during the $90^{\circ}$ abduction.

Parametric study of pendulum type dynamic vibration absorber for controlling vibration of a two DOF structure

  • Bur, Mulyadi;Son, Lovely;Rusli, Meifal;Okuma, Masaaki
    • Earthquakes and Structures
    • /
    • v.13 no.1
    • /
    • pp.51-58
    • /
    • 2017
  • Passive dynamic vibration absorbers (DVAs) are often used to suppress the excessive vibration of a large structure due to their simple construction and low maintenance cost compared to other vibration control techniques. A new type of passive DVA consists of two pendulums connected with spring and dashpot element is investigated. This research evaluated the performance of the DVA in reducing the vibration response of a two degree of freedom shear structure. A model for the two DOF vibration system with the absorber is developed. The nominal absorber parameters are calculated using a Genetic Algorithm(GA) procedure. A parametric study is performed to evaluate the effect of each absorber parameter on performance. The simulation results show that the optimum condition for the absorber frequencies and damping ratios is mainly affected by pendulum length, mass, and the damping coefficient of the pendulum's hinge joint. An experimental model validates the theoretical results. The simulation and experimental results show that the proposed technique is able be used as an effective alternative solution for reducing the vibration response of a multi degree of freedom vibration system.