• Title/Summary/Keyword: Joint compression strength

Search Result 123, Processing Time 0.024 seconds

Study of cracks in compressed concrete specimens with a notch and two neighboring holes

  • Vahab, Sarfarazi;Kaveh, Asgari;Shirin, Jahanmiri;Mohammad Fatehi, Marji;Alireza Mohammadi, Khachakini
    • Advances in concrete construction
    • /
    • v.14 no.5
    • /
    • pp.317-330
    • /
    • 2022
  • This paper investigated computationally and experimentally the interaction here between a notch as well as a micropore under uniaxial compression. Brazilian tensile strength, uniaxial tensile strength, as well as biaxial tensile strength are used to calibrate PFC2d at first. Then, uniaxial compression test was conducted which they included internal notch and micro pore. Experimental and numerical building of 9 models including notch and micro pore were conducted. Model dimensions of models are 10 cm × 10 cm × 5 cm. Joint length was 2 cm. Joints angles were 30°, 45° and 60°. The position of micro pore for all joint angles was 2cm upper than top of the joint, 2 cm upper than middle of joint and 2 cm upper than the joint lower tip, discreetly. The numerical model's dimensions were 5.4 cm × 10.8 cm. The fractures were 2 cm in length and had angularities of 30, 45, and 60 degrees. The pore had a diameter of 1 cm and was located at the top of the notch, 2 cm above the top, 2 cm above the middle, and 2 cm above the bottom tip of the joint. The uniaxial compression strength of the model material was 10 MPa. The local damping ratio was 0.7. At 0.016 mm per second, it loaded. The results show that failure pattern affects uniaxial compressive strength whereas notch orientation and pore condition impact failure pattern. From the notch tips, a two-wing fracture spreads almost parallel to the usual load until it unites with the sample edge. Additionally, two wing fractures start at the hole. Both of these cracks join the sample edge and one of them joins the notch. The number of wing cracks increased as the joint angle rose. There aren't many AE effects in the early phases of loading, but they quickly build up until the applied stress reaches its maximum. Each stress decrease was also followed by several AE effects. By raising the joint angularities from 30° to 60°, uniaxial strength was reduced. The failure strengths in both the numerical simulation and the actual test are quite similar.

Investigation of mechanical behaviour of non-persistent jointed blocks under uniaxial compression

  • Asadizadeh, Mostafa;Moosavi, Mahdi;Hossaini, Mohammad Farouq
    • Geomechanics and Engineering
    • /
    • v.14 no.1
    • /
    • pp.29-42
    • /
    • 2018
  • This paper presents the results of an empirical study in which square rock-like blocks containing two parallel pre-existing rough non-persistent joints were subjected to uniaxial compression load. The main purpose of this study was to investigate uniaxial compressive strength and deformation modulus of jointed specimens. Response Surface Method (RSM) was utilized to design experiments and investigate the effect of four joint parameters, namely joint roughness coefficient (JRC), bridge length (L), bridge angle (${\gamma}$), and joint inclination (${\theta}$). The interaction of these parameters on the uniaxial compressive strength (UCS) and deformation modulus of the blocks was investigated as well. The results indicated that an increase in joint roughness coefficient, bridge length and bridge angle increased compressive strength and deformation modulus. Moreover, increasing joint inclination decreased the two mechanical properties. The concept of 'interlocking cracks' which are mixed mode (shear-tensile cracks) was introduced. This type of cracks can happen in higher level of JRC. Initiation and propagation of this type of cracks reduces mechanical properties of sample before reaching its peak strength. The results of the Response Surface Methodology showed that the mutual interaction of the joint parameters had a significant influence on the compressive strength and deformation modulus.

An experimental study on triaxial failure mechanical behavior of jointed specimens with different JRC

  • Tian, Wen-Ling;Yang, Sheng-Qi;Dong, Jin-Peng;Cheng, Jian-Long;Lu, Jia-wei
    • Geomechanics and Engineering
    • /
    • v.28 no.2
    • /
    • pp.181-195
    • /
    • 2022
  • Roughness and joint inclination angle are the important factors that affect the strength and deformation characteristics of jointed rock mass. In this paper, 3D printer has been employed to make molds firstly, and casting the jointed specimens with different joint roughness coefficient (JRC), and different joint inclination angle (α). Conventional triaxial compression tests were carried out on the jointed specimens, and the influence of JRC on the strength and deformation parameters was analyzed. At the same time, acoustic emission (AE) testing system has been adopted to reveal the AE characteristic of the jointed specimens in the process of triaxial compression. Finally, the morphological of the joint surface was observed by digital three-dimensional video microscopy system, and the relationship between the peak strength and JRC under different confining pressures has been discussed. The results indicate that the existence of joint results in a significant reduction in the strength of the joint specimen, JRC also has great influence on the morphology, quantity and spatial distribution characteristics of cracks. With the increase of JRC, the triaxial compressive strength increase, and the specimen will change from brittle failure to ductile failure.

Strength Prediction of Bolted Woven Composite Joint Using Characteristic Length (특성 길이를 이용한 평직 복합재 볼트 체결부의 강도 예측)

  • Park Seung-Bum;Byun, Joon-Hyung;Ahn, Kook-Chan
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.4
    • /
    • pp.8-15
    • /
    • 2003
  • A study on predicting the joint strength of mechanically fastened woven glass/epoxy composite has been performed. An experimental and numerical study were carried out to determine the characteristic length and joint strength of composite joint. The characteristic lengths for tension and compression were determined from the tensile and compressive test with a hole respectively. The characteristic lengths were evaluated by applying the point stress failure criterion to a specimen containing a hole at the center subjected to tensile loading and a specimen containing a half circular notch at the center subjected to compressive load. The joint strength was evaluated by the Tsai-Wu and Yamada-Sun failure criterion on the characteristic curve. The predicted results of the joint strength were compared with experimental results.

The Effect of External Pelvic Compression on Shoulder and Lumbopelvic Muscle sEMG and Strength of Trunk Extensor During Push Up Plus and Deadlift Exercise (푸쉬업플러스와 데드리프트 운동 시 골반압박이 견관절과 요골반부 주위근의 근활성도와 체간 신전근 근력에 미치는 영향)

  • Huang, Tian-zong;Kim, Suhn-yeop
    • Physical Therapy Korea
    • /
    • v.25 no.3
    • /
    • pp.1-11
    • /
    • 2018
  • Background: Lumbopelvic stability is highly important for exercise therapy for patients with low back pain and shoulder dysfunction. It can be attained using a pelvic compression belt. Previous studies showed that external pelvic compression (EPC) enhances form closure by reducing sacroiliac joint laxity and selectively strengthens force closure and motor control by reducing the compensatory activity of the stabilizer. In addition, when the pelvic compression belt was placed directly on the anterior superior iliac spine, the laxity of the sacroiliac cephalic joint could be significantly reduced. Objects: This study aimed to compare the effects of EPC on lumbopelvic and shoulder muscle surface electromyography (EMG) activities during push-up plus (PUP) and deadlift (DL) exercise, trunk extensor strength during DL exercise. Methods: Thirty-eight subjects (21 men and 17 women) volunteered to participate in this study. The subjects were instructed to perform PUP and DL with and without the EPC. EMG data were collect from serratus anterior (SA), pectoralis major (PM), erector spinae (ES), and multifidus (MF). Trunk extensor strength were tested in DL exercise. The data were collected during 3 repetitions of all exercise and the mean of root mean square was used for analysis. Results: The EMG activities of the SA and PM were significantly increased in PUP with pelvic compression as compared with PUP without pelvic compression (p<.05). In DL exercise, a significant improvement in trunk extensor strength was observed during DL exercise with pelvic compression (p<.05). Conclusion: The results of this study indicate that lumbopelvic stabilization reinforced with external pelvic compression may be propitious to strengthen PUP in more-active SA and PM muscles. Applying EPC can improve the trunk extensor strength during DL exercise. Our study shows that EPC was beneficial to improve the PUP and DL exercise efficiency.

The Optimal Shape Design for the Compression Joint of Thermal Bridge Breaker using FEM (유한요소 해석을 통한 열교 차단장치의 압축판 최적형상 설계)

  • Shin, Dong-Hyeon;Kim, Young-Ho;Kim, Hyung-Joon
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.13 no.2
    • /
    • pp.17-25
    • /
    • 2013
  • It is important to eliminate thermal bridge for achieving passive and environmental-friendly buildings. Structural members may frequently act as thermal bridges that become a conduit of energy. it is emphasized that thermal bridge breaker (TBB) system is necessary for blocking thermal bridge of the structural members. This TBB system has to maintain a performance to tensile and compressive stress which arises in member section in order to being realized structurally. Thus, it is composed with anchorage devices which obtain continuity with structural members inside building and rebar of cantilever balcony, and compression joint which resist compression stress occurring to TBB. Applying method of TBB's compression joint is designed to have high strength with comparatively small element section which can cover external load. This study carried out finite elements method based on compression experiment. Throughout the FEM analysis, this study provides information on finding optimal shape for compression joint of TBB which can suitably apply to current building balcony of Korea.

Back strength and relevance of CPR chest compression (배근력과 심폐소생술의 가슴압박과의 관련성)

  • Choi, Sung-Soo;Han, Mi-Ah;Yun, Seong-Woo;Ryu, So-Yeon
    • The Korean Journal of Emergency Medical Services
    • /
    • v.17 no.2
    • /
    • pp.57-64
    • /
    • 2013
  • Purpose : The purpose of the study is to investigate the quality and relevance of back strength or chest compression which is applied by isotonic exercise of hip joint. Methods : Subjects were 37 students who participated in the BLS course and accepted the informed consent from December 7 to 8, 2012. During CPR performance, back strength was measured by the researcher. CPR was used the manikin for practical training with using PC, conducted by standard CPR for 2 minutes, Quality of chest compressions included average chest compression depth, rate, and recoil ratio. Results : Back strength (kg) is related to the chest compression depth (mm) (r =.746, p <.001). The high quality CPR is the most important factor so high quality is full chest recoil of chest compression and chest compression depth (mm) (${\beta}$=.831, p <.001). In this study, chest compression rate and recoil ration were not influenced by back muscle strength. Conclusion : It is necessary to implement the CPR program to improve physical strength and effective performance of CPR.

Experimental and numerical studies of the pre-existing cracks and pores interaction in concrete specimens under compression

  • Haeri, Hadi;Sarfarazi, Vahab;Zhu, Zheming;Marji, Mohammad Fatehi
    • Smart Structures and Systems
    • /
    • v.23 no.5
    • /
    • pp.479-493
    • /
    • 2019
  • In this paper, the interaction between notch and micro pore under uniaxial compression has been performed experimentally and numerically. Firstly calibration of PFC2D was performed using Brazilian tensile strength, uniaxial tensile strength and biaxial tensile strength. Secondly uniaxial compression test consisting internal notch and micro pore was performed experimentally and numerically. 9 models consisting notch and micro pore were built, experimentally and numerically. Dimension of these models are 10 cm*1 cm*5 cm. the length of joint is 2 cm. the angularities of joint are $30^{\circ}$, $45^{\circ}$ and $60^{\circ}$. For each joint angularity, micro pore was situated 2 cm above the lower tip of the joint, 2 cm above the middle of the joint and 2 cm above the upper of the joint, separately. Dimension of numerical models are 5.4 cm*10.8 cm. The size of the cracks was 2 cm and its orientation was $30^{\circ}$, $45^{\circ}$ and $60^{\circ}$. Diameter of pore was 1cm which situated at the upper of the notch i.e., 2 cm above the upper notch tip, 2 cm above the middle of the notch and 2 cm above the lower of the notch tip. The results show that failure pattern was affected by notch orientation and pore position while uniaxial compressive strength is affected by failure pattern.

2D numerical study of the mechanical behaviour of non-persistent jointed rock masses under uniaxial and biaxial compression tests

  • Vaziri, Mojtaba Rabiei;Tavakoli, Hossein;Bahaaddini, Mojtaba
    • Geomechanics and Engineering
    • /
    • v.28 no.2
    • /
    • pp.117-133
    • /
    • 2022
  • Determination of the mechanical behaviour of jointed rock masses has been a challenge for rock engineers for decades. This problem is more pronounced for non-persistent jointed rock masses due to complicated interaction of rock bridges on the overall behaviour. This paper aims to study the effect of a non-persistent joint set configuration on the mechanical behaviour of rock materials under both uniaxial and biaxial compression tests using a discrete element code. The numerical simulation of biaxial compressive strength of rock masses has been challenging in the past due to shortcomings of bonded particle models in reproducing the failure envelope of rock materials. This problem was resolved in this study by employing the flat-joint contact model. The validity of the numerical model was investigated through a comprehensive comparative study against physical uniaxial and biaxial compression experiments. Good agreement was found between numerical and experimental tests in terms of the recorded peak strength and the failure mode in both loading conditions. Studies on the effect of joint orientation on the failure mode showed that four zones of intact, transition to block rotation, block rotation and transition to intact failure occurs when the joint dip angle varies from 0° to 90°. It was found that the applied confining stress can significantly alter the range of these zones. It was observed that the minimum strength occurs at the joint dip angle of around 45 degrees under different confining stresses. It was also found that the joint orientation can alter the post peak behaviour and the lowest brittleness was observed at the block rotation zone.

Strength Prediction and Optimum Design of Internally Ring-Stiffened Tubular X-and T-Joints (내부 환보강 X형 및 T형 관이음부의 강도산정과 최적설계)

  • Cho, Hyun-Man;Ryu, Yeon-Sun;Lee, Hyun-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.315-320
    • /
    • 2007
  • An effective reinforcement method for steel tubular joints having a large chord diameter is the use of internal ring stiffeners. This paper presents the results of a numerical study on the static strength of internally ring-stiffened tubular X- and T-joints subjected to brace axial compression loading. Nonlinear finite element analyses are used to compute the joint strength. The influence of geometrical parameters has been studied and the maximum reinforcement effect of a ring stiffener has been evaluated. A strength ratio is defined. by the ratio of ring-stiffened joint strength to unstiffened joint strength, and an equation for this strength ratio is derived by regression analysis. Design optimization for ring stiffener of tubular joints is carried out using metropolis genetic algorithm.

  • PDF