• Title/Summary/Keyword: Joint Strengths

Search Result 217, Processing Time 0.088 seconds

Experimental and Numerical Study on Complex Multi-planar Welded Tubular Joints in Umbrella-Type Space Trusses with Long Overhangs

  • Jiao, Jinfeng;Ma, Xiao;Lei, Honggang;Chen, Y. Frank
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1525-1540
    • /
    • 2018
  • A test rig with multi-functional purposes was specifically designed and manufactured to study the behavior of multi-planar welded tubular joints subjected to multi-planar concurrent axial loading. An experimental investigation was conducted on full-scale welded tubular joints with each consisting of one chord and eight braces under monotonic loading conditions. Two pairs or four representative specimens (two specimens for each joint type) were tested, in which each pair was reinforced with two kinds of different internal stiffeners at the intersections between the chords using welded rectangular hollow steel sections (RHSSs) and the braces using rolled circular hollow steel sections (CHSSs) and welded RHSSs. The effects of different internal stiffeners at the chord-brace intersection on the load capacity of joints under concurrent multi-planar axial compression/tension are discussed. The test results of joint strengths, failure modes, and load-stress curves are presented. Finite element analyses were performed to verify the experimental results. The study results show that the two different joint types with the internal stiffeners at the chord-brace intersection under axial compression/tension significantly increase the corresponding ultimate strength to far exceed the usual design strength. The load carrying capacity of welded tubular joints decreases with a higher degree of the manufacturing imperfection in individual braces at the tubular joints. Furthermore, the interaction effect of the concurrent axial loading applied at the welded tubular joint on member stress is apparent.

Test of Headed Reinforcement in Pullout

  • Park, Dong-Uk;Hong, Sung-Gul;Lee, Chin-Yong
    • KCI Concrete Journal
    • /
    • v.14 no.3
    • /
    • pp.102-110
    • /
    • 2002
  • Results of an experimental study on the pullout behavior of the headed reinforcement are presented. A total of 48 pullout tests was performed to evaluate pullout strengths and load-displacement behaviors in pullout of the headed bars. The square steel heads had gross area of 4 $A_{b}$ and thickness of $d_{b}$ The test program consisted of three pullout test groups: Simple and Edge pullout tests using plain concrete slabs, comparison of pullout performances between the standard hooks and the headed reinforcement, and pullout tests of headed reinforcement using reinforced concrete columns. Test variables included concrete strengths ( $f_{c}$' = 27.1MPa, 39.1MPa), reinforcing bar diameters (D16~D29), embedment depths (6 $d_{b}$~12 $d_{b}$), edge conditions, column reinforcement, and single-vs.-multiple bar pullout. Test results revealed that the heads effectively provided the pullout resistances of the deformed bars in tension. The load-displacement behaviors were similar between the 90-degree hooks and the headed reinforcement. When a multiple number of headed bars installed with small head-to-head spacings was pulled out, reinforcement designed to run across the concrete failure surface in a direction parallel to the headed bars helped improve the pullout performances of the headed reinforcement.t.ement.t.

  • PDF

Study on Fiber Laser Welding Characteristics of Copper for Secondary Battery Material (이차전지 소재용 구리의 파이버 레이저 용접 특성에 관한 연구)

  • Park, Eun Kyeong;Lee, Ka Ram;Lee, Hyun Jung;Yoo, Young Tae
    • Laser Solutions
    • /
    • v.17 no.3
    • /
    • pp.1-9
    • /
    • 2014
  • In this study, we analyzed fiber laser welding for the pure copper thin plates in a series of secondary lithium-ion batteries; and performed the experiment for the purpose of the preceding study to replace bolt joints method the with the laser welding method. We have changed the peak power of the laser from 5 to 6kW, the pulse duration by 4, 6, 8, and 10ms, the frequency by 10, 12, 16, and 25Hz, and the focal position by -3, 0, and +3. As a result, when the focal position is at +3, the peak power is 5kW, and the pulse duration and the Frequency are 4ms and 25Hz, respectively, we obtain 2.1 and 2.5 times better tensional strengths, respectively, than the highest values of tensional strengths obtained with the focal positions at 0 and -3.

  • PDF

Japanese Financing Policies for Innovation Since the 1990s

  • Intarakumnerd, Patarapong;Charumilin, Pattarawan
    • STI Policy Review
    • /
    • v.4 no.2
    • /
    • pp.55-73
    • /
    • 2013
  • Since the 1990s, the Japanese government has made considerable attempts at stimulating innovation with an aim to pull the country out of a possibly permanent economic decline. Several laws and policy initiatives were introduced to encourage better interaction between universities (and research institutions) and industry. The results of these efforts have been mixed. While the number of university-industry joint and commissioned research has increased, revenues from the licensing of university-owned patents have fluctuated year by year. Although the number of startups and spin-offs from universities rose, their long-term survival and contribution to the economy remain uncertain. The Japanese experience features both strengths and weaknesses. Strengths include the long-term commitment of policy makers, the ability to set specific targets, and the active engagement of several key economic ministries. Nevertheless, the effectiveness of these policy initiatives was hampered by limitations within the policies concerning the roles of universities and their mode of interaction with industry based on intellectual property rights, the inadequacy of demand-side innovation policies, the fragmentation of bureaucracy, and a lack of a credible evaluation system.

Effects of Reactive Air Brazing Parameters on the Interfacial Microstructure and Shear Strength of GDC-LSM/Crofer 22 APU Joints

  • Raju, Kati;Kim, Seyoung;Seong, Young-Hoon;Yoon, Dang-Hyok
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.4
    • /
    • pp.394-398
    • /
    • 2019
  • In this paper, the joining characteristics of GDC-LSM ceramics with Crofer 22 APU metal alloys was investigated at different brazing temperatures and holding times by reactive air brazing. Brazing was performed using Ag-10 wt% CuO filler, at three different temperatures (1000, 1050, and 1100℃ for 30 minutes) as well as for three different holding times (10, 30, and 60 minutes at 1050℃). The interfacial microstructures were examined by scanning electron microscopy and the joining strengths were assessed by measuring shear strengths at room temperature. The results show that with increasing brazing temperature and holding time, joint microstructure changed obviously and shear strength was decreased. Shear strength varied from a maximum of 100±6 MPa to a minimum of 18±5 MPa, depending on the brazing conditions. These changes were attributed to an increase in the thickness of the oxide layer at the filler/metal alloy interface.

Failure characteristics of columns intersected by slabs with different compressive strengths

  • Choi, Seung-Ho;Hwang, Jin-Ha;Han, Sun-Jin;Kang, Hyun;Lee, Jae-Yeon;Kim, Kang Su
    • Structural Engineering and Mechanics
    • /
    • v.74 no.3
    • /
    • pp.435-443
    • /
    • 2020
  • The objective of this study was to determine the effective compressive strength of a column-slab connection with different compressive strengths between the column and slab concrete. A total of eight column specimens were fabricated, among which four specimens were restrained by slabs while the others did not have any slab, and the test results were compared with current design codes. According to ACI 318, the compressive strength of a column can be used as the effective compressive strength of the column-slab connection in design when the strength ratio of column concrete to slab concrete is less than 1.4. Even in this case, however, this study showed that the effective compressive strength decreased. The specimen with its slab-column connection zone reinforced by steel fibers showed an increased effective compressive strength compared to that of the specimen without the reinforcement, and the interior column specimens restrained with slabs reached the compressive strength of the column.

A Study on the Strength Characteristics and Failure Detection of Single-lap Joints with I-fiber Stitching Method (I-fiber 스티칭 공법이 적용된 Single-lap Joint의 강도 특성 및 파손 신호 검출 연구)

  • Choi, Seong-Hyun;Song, Sang-Hoon;An, Woo-Jin;Choi, Jin-Ho
    • Composites Research
    • /
    • v.34 no.5
    • /
    • pp.317-322
    • /
    • 2021
  • When a complex load such as torsion, low-speed impact, or fatigue load is applied, the properties in the thickness direction are weakened through microcracks inside the material due to the nature of the laminated composite material, and delamination occurs. To prevent the interlaminar delamination, various three-dimensional reinforcement methods such as Z-pinning and stitching, and structural health monitoring techniques that detect the microcrack of structures in real time have been continuously studied. In this paper, the single-lap joints with I-fiber stitching process were manufactured by a co-curing method and their strengths and failure detection capability were evaluated. AE and electric resistance method were used for detection of crack and failure signal and electric circuit for signal analysis was manufactured, and failure signal was analyzed during the tensile test of a single-lap joint. From the experiment, the strength of the single lap joint reinforced by I-fiber stitching process was improved by about 44.6% compared to the co-cured single lap joint without reinforcement. In addition, as the single-lap joint reinforced by I-fiber stitching process can detect failure in both the electrical resistance method and the AE method, it has been proven to be an effective structure for failure monitoring as well as strength improvement.

Bending Performance Evaluation of Concrete Filled Tubular Structures With Various Diameter-thickness Ratios and Concrete Strengths (콘크리트 충전강관 구조의 직경-두께비 및 콘크리트 강도 변화에 따른 휨 성능 평가)

  • Lee, Sang-Youl;Park, Dae-Yong;Lee, Sang-Bum;Lee, Rae-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.2 s.54
    • /
    • pp.223-230
    • /
    • 2009
  • In this study we deal with bending behaviors of a concrete filled tubular(CFT) with various diameter-thickness ratios and concrete strengths. In finite element analysis using a commercial package(LUSAS), the bonding effect between concrete and steel in CFT structures is modeled by applying a joint element for the bonding surface. In order to consider the nonlinearity of concrete and steel tubes, stress-strain curves of the concrete and steel are used for the increased stresses in a plastic domain. The numerical results obtained from the proposed method show good agreement with the experimental data from load-displacement curves of a steel tube under distributed loads. Several parametric studies are focused on structural characteristics of CFT under bending effects for different diameter-thickness ratios and concrete strengths.

Performance Comparison of Korean Tongue and Groove Joint between Hand-made and Pre-cut (주먹장 접합부의 수가공과 기계가공의 성능비교)

  • Kim, Gwang-Chul;Kim, Jun-Ho
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.5
    • /
    • pp.664-676
    • /
    • 2016
  • Recently, the demand on the Hanok have been increased with social change. However, Hanok has a major problem of a rising costs caused by hand-made process. So, performance comparison between hand-made process and pre-cut process was conducted to modularize the joints in Hanok. Douglas-fir was used to manufacture the structural size dovetail joints by hand-made and pre-cut precess. The bending strengths on joints with two process were evaluated. The average ultimate load of pre-cut joints was 1.5 times higher than that of hand-made joints. F-test results in both process showed a great relationships between ultimate load and tenon's size variation. The length and thickness of tenon showed a proportional relationship with the ultimate load, but the tenon width showed inverse proportion with the ultimate load. This results may be used as basic data for the joint modularization of Hanok.

Evaluation of Pull-Out Strength of Connections with Roof Cladding using Honey Comb Panel Secured Cool Roof Performance (Cool Roof 성능을 확보한 Honey Comb Panel 지붕 접합부의 인발 성능 평가)

  • Lee, In Ho;Park, Sang Woo;Ko, Kwang Il;Chung, Mi Ja;Lee, Eun Taik
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.3
    • /
    • pp.139-149
    • /
    • 2016
  • Roof cladding of buildings are required for the measures about the 'screw pull-out' which causes the casualties and the property damage by typhoons. In this study, the pull-out resistance was increased by increasing the penetration depth of the screw installing a ironware called 'insert nut' on the roof cladding frame. Tensile tests were conducted to compare the pull-out strengths of a general screw-joint and a nut insert joint. Roof cladding that is actually being used in the field was produced using the 'solid work' and then the roof claddings using a general screw-joint and a nut insert joint were compared by a static test and dynamic test.