• Title/Summary/Keyword: Joint Space Narrow

Search Result 18, Processing Time 0.028 seconds

Development of a Snake Robot for Unstructured Environment (비정형 환경에 적용하기 위한 뱀 로봇 개발)

  • Shin, Hocheol;Kim, Chang-Hoi;Lee, Heung-Ho
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.4
    • /
    • pp.247-255
    • /
    • 2013
  • This paper shows the development of a snake robot (KAEROT-snake V) which consists of 16 1-DOF actuator modules and head module. The modules are connected serially and the joint axis of each module is rotated by $90^{\circ}$ with respect to the previous joint so that the snake robot can move in the 3D space. A tail actuator module includes slip-ring and metal connector. KAEROT-snake IV developed in prior research could move in the 3D space and climb up in a narrow pipe. But its design was not appropriate to the unstructured tough environment and its speed was somewhat slow. A new actuator module is designed to enclose all parts of the module so that any wire is not exposed. The size and weight of the new module was slightly reduced. And the rotation speed and torque of the joint was increased by about twice when compared with pre-module. An embedded controller was developed so small that it can be mounted inside the module. The performance of the developed robot was demonstrated through various locomotion experiments.

Rotator Cuff Tears Syndrome (회전근개 파열 증후군)

  • Kang, Jeom-Deok;Kim, Hyun-Joo
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.13 no.1
    • /
    • pp.67-72
    • /
    • 2007
  • Anatomy: The rotator cuff comprises four muscles-the subscapularis, the supraspinatus, the infraspinatus and the teres minor-and their musculotendinous attachments. The subscapularis muscle is innervated by the subscapular nerve and originates on the scapula. It inserts on the lesser tuberosity of the humerus. The supraspinatus and infraspinatus are both innervated by the suprascapular nerve, originate in the scapula and insert on the greater tuberosity. The teres minor is innervated by the axillary nerve, originates on the scapula and inserts on the greater tuberosity. The subacromial space lies underneath the acromion, the coracoid process, the acromioclavicular joint and the coracoacromial ligament. A bursa in the subacromial space provides lubrication for the rotator cuff. Etiology: The space between the undersurface of the acromion and the superior aspect of the humeral head is called the impingement interval. This space is normally narrow and is maximally narrow when the arm is abducted. Any condition that further narrows this space can cause impingement. Impingement can result from extrinsic compression or from loss of competency of the rotator cuff. Syndrome: Neer divided impingement syndrome into three stages. Stage I involves edema and/or hemorrhage. This stage generally occurs in patients less than 25 years of age and is frequently associated with an overuse injury. Generally, at this stage the syndrome is reversible. Stage II is more advanced and tends to occur in patients 25 to 40 years of age. The pathologic changes that are now evident show fibrosis as well as irreversible tendon changes. Stage III generally occurs in patients over 50 years of age and frequently involves a tendon rupture or tear. Stage III is largely a process of attrition and the culmination of fibrosis and tendinosis that have been present for many years. Treatment: In patients with stage I impingement, conservative treatment is often sufficient. Conservative treatment involves resting and stopping the offending activity. It may also involve prolonged physical therapy. Sport and job modifications may be beneficial. Nonsteroidal anti - inflammatory drugs(NSAIDS) and ice treatments can relieve pain. Ice packs applied for 20 minutes three times a day may help. A sling is never used, because adhesive capsulitis can result from immobilization.

  • PDF

Studies on Preparation of Dysprosium-165 Metallic Macroaggregates for the Treatment of Rheumatoid Arthritis (류마티스 관절염 치료용 디스프로슘-165금속 응집입자($^{165}Dy-MA$)의 제조에 관한 연구)

  • Park, Kyung-Bae;Kim, Jae-Rok
    • The Korean Journal of Nuclear Medicine
    • /
    • v.28 no.2
    • /
    • pp.227-233
    • /
    • 1994
  • Irradiation of 20mg of natural $Dy(NO_3)_3$ in a neutron flux of $2{\times}10^{13}n/cm^2$ sec for 4 hours gave 5.76 Ci of $^{165}Dy$(specific activity, 610mCi/mg Dy) with high radionuclidic purity (>99.9 %). $^{165}Dy-MA$ was prepared in a quantitative yield by reacting the aqueous solution of $^{165}Dy(NO_3)_3$ with sodium borohydride solution in 0.2N NaOH. Coulter particle analyzer exhibited mean particle size of $2.6{\mu}m$ (range $1{\sim}6{\mu}m$), Even though the $^{165}Dy-MA$ suspension in saline was stored at $37^{\circ}C$ for 24 hours or autoclaved at $121^{\circ}C$ for 30minutes, there was no significant change in particle size and leakage problem indicating the prepared $^{165}Dy-MA$ is sufficiently stable. In-vivo retention studies were carried out by administering $^{165}Dy-MA$ into the knee joint space of normal rabbits. Gamma camera analysis showed high retention in joint space of normal rabbits. Gamma camera analysis showed high retention in joint space even at 24 hours after administration (> 99.9%). The ease with which the $^{165}Dy-MA$ can be made in the narrow size range and their high invitro and vivo stability make them attractive agents for radiation synovectomy.

  • PDF

Upper Extremity Biomechanics of Manual Wheelchair Propulsion at Different Speeds (수동 휠체어 추진 속도에 따른 상지 관절 생체역학적 영향 분석)

  • Hwang, Seonhong
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.241-250
    • /
    • 2022
  • It is known that chronic pain and injury of upper limb joint tissue in manual wheelchair users is usually caused by muscle imbalance, and the propulsion speed is reported to increase this muscle imbalance. In this study, kinematic variables, electromyography, and ultrasonographic images of the upper limb were measured and analyzed at two different propulsion speeds to provide a quantitative basis for the risk of upper extremity joint injury. Eleven patients with spinal cord injury for the experimental group (GE) and 27 healthy adults for the control group (GC) participated in this study. Joint angles and electromyography were measured while subjects performed self-selected comfortable and fast-speed wheelchair propulsion. Ultrasound images were recorded before and after each propulsion task to measure the acromiohumeral distance (AHD). The range of motion of the shoulder (14.35 deg in GE; 20.24 deg in GC) and elbow (5.25 deg in GE; 2.57 deg in GC) joints were significantly decreased (p<0.001). Muscle activation levels of the anterior deltoid, posterior deltoid, biceps brachii, and triceps brachii increased at fast propulsion. Specifically, triceps brachii showed a significant increase in muscle activation at fast propulsion. AHD decreased at fast propulsion. Moreover, the AHD of GE was already narrowed by about 60% compared to the GC from the pre-tests. Increased load on wheelchair propulsion, such as fast propulsion, is considered to cause upper limb joint impingement and soft tissue injury due to overuse of the extensor muscles in a narrow joint space. It is expected that the results of this study can be a quantitative and objective basis for training and rehabilitation for manual wheelchair users to prevent joint pain and damage.

Development of Vertical Separated Tubular Steel Pole (종방향 분할형 관형지지물 개발)

  • Lee, Won-kyo;Mun, Sung-Duk;Shin, Kooyong
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.4
    • /
    • pp.257-262
    • /
    • 2019
  • Lattice steel towers for overhead transmission lines have been replaced by tubular steel poles due to the visual impact of large and complex shape of truss type. Demand for tubular steel poles consisting of a single frame member continues to grow because of its advantages such as visual minimization, architectural appeal and minimal site consumptions. However, there are some constraints on the transportation and construction. As the diameter of tower base has been enlarged, it may exceed minimum height limit required to pass the tunnel in case of land transportation. Also, in a narrow place where it is not easy to secure the installation areas such as mountainous places, there might be some areas wherein it must secure a wide working space so that large vehicles and working cranes will be allowed to enter. In this paper, we presented a vertical separated tubular steel pole, which is a new type of support that can be implemented for general purpose such as mountainous areas or narrow areas to improve the issues raised by breaking away from the conventional design and fabrication methods. Technical approaches for overcoming the limit of the cross-sectional size is to separate and modularize the cross-section of the tubular steel pole designed with a size that cannot be carried or assembled, and to lighten it with a weight capable of being transported and assembled in a narrow space or mountainous area. As a result of this research, it will be possible to enter small and medium sized vehicles in locations where it is restricted to transport by large-sized vehicles. In the case of mountainous areas, it will be possible to divide it into a weight capable of being carried by a helicopter and it will be easy to adjust and fabricate it with individual modules. Furthermore, in order to break away from the traditional construction method, we proposed the equipment that can be applied to the assembly of Tubular Steel Pole without using a large crane in locations where there is no accessible road or in locations wherein large cranes cannot enter. In particular, this paper shows the movable assembling equipment and some methods that are specialized for vertical separated tubular steel pole consisting of members with reduced weight. The proposed assembly equipment is a device for assembling the body of the Tubular Steel Poles. It will be installed inside the support and the modules can be lifted by using the support itself.

Engineering Geological Geotechnical Characteristics of Newly Constructed Road between the Yangsan Fault and the Dongrae Fault (양산단층과 동래단층 사이를 통과하는 지방도의 지질공학적 특성 연구)

  • 이병주;선우춘
    • The Journal of Engineering Geology
    • /
    • v.13 no.2
    • /
    • pp.193-205
    • /
    • 2003
  • Fine grained granite, porphyritic granite and biotite granite together with intruded and extruded andesitic rocks are distributed in the study area which is bounded by the Yangsan and Dongrae faults. A new domestic road is being constructed along the area between the two major faults. The NNE trending Bupki fault and NE trending Myungkog fault are also developed within the area cross the road. The sheeting joints with dips of less than 30 degrees are only developed in the area of granite outcrop. High angle joints can be divided into 3 sets, such as, NE trending, NW trending and nearly EW trending joints. The joint space is mostly more than 20cm and the joint compressive strength is more than 100 MPa. These data show that even though the study area is situated between large faults, the ground condition is good because the damage zone of the Yangsan and Dongrae faults is relatively narrow.

Omni-tread Type Snake Robot: Mathematical Modeling and Implementation (Omni-tread 뱀 로봇 모델링 및 개발)

  • Oh, Sang-Jin;Lee, Ji-Hong;Choi, Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.10
    • /
    • pp.1022-1028
    • /
    • 2008
  • This article presents an omni-tread snake robot that designed to locomote on narrow space and rough terrain. The omni-tread snake robot comprises three segment, which are linked to each other by 2 degrees of freedom joints for the pitch and yaw motion. Moving tracks on all four sides of each segment guarantee propulsion even when the robot rolls over. The 2 DOF joint are actuated by 2 servo motors which produce sufficient torque to lift the one leading or trailing segments up and overcome obstacles. This paper applies articulated steering technique to get omni-tread snake robot's kinematics model.

A Study for Safety Work Control System in the Narrow Space (협소 공간 작업을 위한 안전제어 시스템에 관한 연구)

  • Cho, Y.S.;Kim, H.S.;Song, I.S.;Jeong, C.S.;Yang, S.Y.
    • 유공압시스템학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.62-65
    • /
    • 2010
  • Field robot represented by excavator can be applied for various working in manufacturing, construction, agriculture etc. Because of the flexibility of its multi-joint mechanism and the high power of hydraulic actuators. Since the excavator operates in the hazardous working circumstance, operators exposed in harmful environment. Therefore, automation system has been investigated to protect from the harmful environment. In this paper, the method to construct the remote control system is proposed. The remote control system is consisted of a manual and auto mode. Manual mode controls a hydraulic cylinder as open loop control. and auto mode controls the end effecter of excavator using tracking control system. The efficiency of remote control system was evaluated through the field test.

  • PDF

Numerical Analysis of Grout Flow and Injection Pressure Affected by Joint Roughness and Aperture (절리 거칠기와 간극 변화에 따른 그라우트 유동과 주입압에 관한 수치해석적 연구)

  • Jeon, Ki-Hwan;Ryu, Dong-Woo;Kim, Hyung-Mok;Park, Eui-Seob;Song, Jae-Jun
    • Tunnel and Underground Space
    • /
    • v.20 no.2
    • /
    • pp.82-91
    • /
    • 2010
  • Grouting technology is one of the ground improvement methods used in water controlling and reinforcement of rock mass in underground structure construction. It is necessarily required to find out the characteristics of grout flow through discontinuities in a rock mass for an adequate grout design and performance assessment. Laminar flow is not always applicable in simulating a grout flow in a rock mass, since the rock joints usually have apertures at a micro-scale and the flow through these joints is affected by the joint roughness and the velocity profile of the flow changes partially near the roughness. Thus, the influence of joint roughness and aperture on the grout flow in rough rock joint was numerically investigated in this study. The commercial computational fluid dynamics code, FLUENT, was applied for this purpose. The computed results by embedded Herschel-Bulkley model and VOF (volume of fluid) model, which are applicable to simulate grout flow in a narrow rock joint that is filled with air and water, were well compared with that of analytical results and previously published laboratory test for the verification. The injection pressure required to keep constant injection rate of grout was calculated in a variety of Joint Roughness Coefficient (JRC) and aperture conditions, and the effect of joint roughness and aperture on grout flow were quantified.

Magnetic resonance imaging-based temporomandibular joint space evaluation in tempormandibular disorders (측두하악관절증에서 자기공명영상을 이용한 측두하악관절의 관절강 평가)

  • Nah, Kyung-Soo
    • Imaging Science in Dentistry
    • /
    • v.37 no.1
    • /
    • pp.15-18
    • /
    • 2007
  • Purpose : Disc and condylar position were observed on MRIs of temporomandibular joint disorder patients and condylar position agreement between MRI and tranascranal radiography was evaluated. Materials and Methods MRI and transcranial radiographs of both TM joints from 67 patients with temporemandibular disorder were used. On MRI, the position and shape of disc and condylar position as anterior, middle, posterior was evaluated at medial, center, and lateral views. On transcranial radiographs, condylar position was evaluated using the shortest distance from condyle to fossa in anterior, superior, and posterior directions. Results. 1. On MRI, 96 joints (71.6%) of 134 had anterior disc dispalcement with reduction and 38 joints (28.4%) without reduction. 2. Fourteen (14.6%) of 96 reducible joints showed anterior condylar position, 19 (19.8%) showed central position, 63 joints (65.6%) showed posterior position. Two joints (5.3%) of 38 non-reducible joints showed anterior condylar position, while 9 (23.7%) showed central position, and 27 (71.1%)-posterior position. 3. In 85 joints (63.4%) of 134, the transcranial condylar position agreed with that of the central MRI view, 10 joints (7.5%) with that of medial, 16 joints (11.9%) with that of lateral, and 23 joints (17.2%) disagreed with that of MRI. Conclusion : On MRT, most oi the reducible and non-reducible joints showed posterior condylar position. Transcranial radiographs taken with machine designed for TMJ had better agreement of condylar position with that of MRI. Extremely narrow joint spaces or very posterior condylar positions observed on transcranial radiographs had a little more than fifty percent agreement with those of MRIs.

  • PDF