• Title/Summary/Keyword: Joint Orientation

Search Result 205, Processing Time 0.034 seconds

Survey Equipment Development of Stability Evaluation for Rock Slope using Drone (드론을 이용한 암반사면의 안정성평가 측정장비 개발)

  • Lee, Hyun-Chol;Kwon, Ki-mun;Moon, Chang-eun;Jo, Yeong-hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.4
    • /
    • pp.91-99
    • /
    • 2018
  • Mechanical Properties of Rock Slope as a safe and effective interpretation should be thoroughly investigated. Clinometer, however, this new measurement due to the restrictions of the research for the joint orientation is needed. In this study, characteristics of the joint orientation can be used to analyze the joint orientation of developing a joint survey system that can be applied to the field. The system is developed and Analysis software to hardware. Hardware is composed to measure the joint orientation of measuring module, measuring the transfer of data transfer module. From the software is measuring module from the data to analyze the orientation of the joint development, and drone joint orientation survey system named. Can not be measured by the investigation, including regional development approach is a system that has been difficult if the Field Application of the lab test results of the joint orientation and effectively.

Measurement Equipment Development of Stability Evaluation for Joint Slope using Unmaned Aerial Vehicle (무인항공기를 이용한 절리사면의 안정성평가 계측장비 개발)

  • Lee, Hyun Chol;Kwon, Ki Mun;Moon, Chang Eun;Jo, Yeong Hun
    • Tunnel and Underground Space
    • /
    • v.28 no.3
    • /
    • pp.193-208
    • /
    • 2018
  • In order to interpret rock slope safely and effectively, the mechanical properties of the rock must be carefully investigated. However, due to the limitations of clinometer usage, a new measure of measurement is required to complement these limitations. In this study, a measuring device was developed to analyze the characteristics of joint orientation, and to apply the orientation of joint to the field. The developed measuring equipment is divided into analysis software and hardware. The hardware was composed of a measuring module that measures the joint orientation of rock and a transport module that transmits the measurement data. The software was developed to analyze the orientation of the joint from the data obtained from the measuring module and is named Drone Joint Orientation Survey Measurement. The developed measuring equipment was well field capable if it could not be measured by the inspector, such as in areas where access was difficult, and was capable of effectively analyzing the lab test results for the orientation of the joint.

Development of Discontinuity Orientation Measurement (DOM) Drilling System and Core Joint Analysis Model (Discontinuity Orientation Measurement (DOM) 시추장비 및 코어절리 해석모델 개발)

  • 조태진;유병옥;원경식
    • Tunnel and Underground Space
    • /
    • v.13 no.1
    • /
    • pp.33-43
    • /
    • 2003
  • Field investigations of the orientations of discontinuity planes inside the borehole for designing the underground rock structures have been depend solely on the borehole image-taking techniques. But, borehole image-taking has to be processed after the completion of drilling operation and also requires the handling of highly expensive apparatus so that practical application is very restricted. In this study Discontinuity Orientation Measurement (DOM) drilling system and discontinuity analysis model RoSA-DOM are developed to acquire the reliable information of rock structure by analyzing the characteristics of joint distribution. DOM drilling system retrieves the rock core on which the reference line of pre-fixed drilling orientation is engraved. Coordinates of three arbitrary points on the joint surface relative to the position of reference line are assessed to determine the orientation of joint plane. The position of joint plane is also allocated by calculating the location of core axis at which joint plane is intersected. Then, the formation of joint set is analyzed by utilizing the clustering algorithm. Total and set spacings are calculated by considering the borehole axis as the scanline. Engineering applicability of in-situ rock mass around the borehole is also estimated by calculating the total and regional RQDs along the borehole axis.

A Study on the Characteristics of Stress Transfer around Cavern due to Cavern size and Rock Joint Orientation by Laboratory Model Test (모형실험을 통한 공동규모와 절리 방향성에 따른 공동배면의 응력전이 특성에 대한 연구)

  • Kim, Sang-Hwan;Shin, Beom-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.595-606
    • /
    • 2009
  • This paper presents the characteristics of stress transfer around carven due to cavern size and rock joint properties by laboratory model test. In order to perform this study, eight different scaled model tests were carried out according to excavation stage. The limited numerical analysis were also performed to verify the model test results. The amount of stress transfer around the cavern is increased and then decreased by longitudinal arching effect according to tunnel excavation. It is founded that the stress developed around the cavern during excavation is increased when the cavern size and joint orientation are increased. It is also investigated that shear behaviour (such as stress, deformation) developed around cavern is considerably depended on the characteristic of fill material, dip and direction of joints. It is suggested that the behaviour will be verified throughout the 3D numerical prediction.

  • PDF

Influence of Joint Spacing to Rock Slope Stability (절리 간격이 암반 사면의 안정성에 미치는 영향)

  • 윤운상;권혁신;김정환
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.511-518
    • /
    • 2000
  • Characteristics of joint orientation, length, spacing and their distribution are very important factors for slope stability, Especially, the effect of joint spacing is an essential factor of slope stability. This study is to analyze the effect of joint spacing in cases of sliding and toppling, which is a typical failure mode. Joint spacing can divided into vertical spacing(spacing) and horizontal spacing(gap). And then, the spacing/length ratio of joint directly affect rock slope failure. When the ratio is below 0.05, the possibility of failure is rapidly increased. In case of toppling, the possibility of failure depends on the ratio of spacing to height of slope ratio slope. As the ratio decreases, the possibility of toppling failure increased. The critical ratio of spacing to height of slope is determined by the dip angle of the slope and the orientation of joint sets.

  • PDF

The Effect of Youndamsagan-tang on a Case of Septic Knee: A Case Report (용담사간탕을 투여한 화농성 슬관절염 환자의 치검 1례)

  • Kang Dae Hee;Kim Young Dal;Kim Chang Nyun;Min Ji Yeun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.6
    • /
    • pp.1547-1551
    • /
    • 2003
  • This study was carried out to characterized the effect of Youndamsagan-tang on a Case of Septic Knee. After we gave Youndamsagan-tang to a patient of septic knee, we examined not only symptom of patient but also the thickness and circumference of knee, the change of WBC, ESR, body temperature, VAS. As admission time passes, the pain, flare, swelling and movement of left-side knee joint were improved. The thickness and circumference of knee joint were decreased, and the count of WBC, ESR were decreased. And patient's pain by VAS was subsided. From the above result, administration of Youndamsagan-tang reduces the progressing of pain, flare, swelling and movement in knee joint.

Effect of Joint Orientation Distribution on Hydraulic Behavior of the 2-D DFN System (절리의 방향분포가 이차원 DFN 시스템의 수리적 특성에 미치는 영향)

  • Han, Jisu;Um, Jeong-Gi
    • Economic and Environmental Geology
    • /
    • v.49 no.1
    • /
    • pp.31-41
    • /
    • 2016
  • A program code was developed to calculate block hydraulic conductivity of the 2-D DFN(discrete fracture network) system based on equivalent pipe network, and implemented to examine the effect of joint orientation distribution on the hydraulic characteristics of fractured rock masses through numerical experiments. A rock block of size $32m{\times}32m$ was used to generate the DFN systems using two joint sets with fixed input parameters of joint frequency and gamma distributed joint size, and various normal distributed joint trend. DFN blocks of size $20m{\times}20m$ were selected from center of the $32m{\times}32m$ blocks to avoid boundary effect. Twelve fluid flow directions were chosen every $30^{\circ}$ starting at $0^{\circ}$. The directional block conductivity including the theoretical block conductivity, principal conductivity tensor and average block conductivity were estimated for generated 180 2-D DFN blocks. The effect of joint orientation distribution on block hydraulic conductivity and chance for the equivalent continuum behavior of the 2-D DFN system were found to increase with the decrease of mean intersection angle of the two joint sets. The effect of variability of joint orientation on block hydraulic conductivity could not be ignored for the DFN having low intersection angle between two joint sets.

The Effect of Joint Condition on Rock Fragmentation in Bench Blasting (절리간격과 방향이 벤치발파시 암석파쇄도에 미치는 영향에 대한 실험 연구)

  • Choi Yong-Kun;Lee Chung-In
    • Explosives and Blasting
    • /
    • v.23 no.2
    • /
    • pp.37-44
    • /
    • 2005
  • Recent studies reported that natural block size of rock and joint orientation highly affect on rock fragmentation. In this study, blasting test using high strength cement mortar was carried out to verify this fact. The result of this test indicated that fragmentation is influenced by the joint interval, and at same joint interval condition, fragmentation depends on joint orientation. These results are significantly coincident with field investigations.

Theoretical and experimental modal responses of adhesive bonded T-joints

  • Kunche, Mani Chandra;Mishra, Pradeep K.;Nallala, Hari Babu;Hirwani, Chetan K.;Katariya, Pankaj V.;Panda, Subhransu;Panda, Subrata K.
    • Wind and Structures
    • /
    • v.29 no.5
    • /
    • pp.361-369
    • /
    • 2019
  • The modal frequency responses of adhesive bonded T-joint structure have been analyzed numerically and verified with own experimental data. For this purpose, the damped free frequencies of the bonded joint have been computed using a three-dimensional finite element model via ANSYS parametric design language (APDL) code. The practical relevance of the joint structure analysis has been established by comparing the simulation data with the in-house experimental values. Additionally, the influences of various geometrical and material parameters on the damped free frequency responses of the joint structure have been investigated and final inferences discussed in details. It is observed that the natural frequency values increase for the higher aspect ratios of the joint structure. Also, the joint made up of Glass fiber/epoxy with quasi-isotropic fiber orientation indicates more resistance towards free vibration.

Effect of Joint Errors Analysis for a Cubic Parallel Device (육면형 병렬 기구에서의 조인트 오차의 영향)

  • 임승룡;최우천
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.672-675
    • /
    • 2000
  • There are many sources of errors in the parallel device. This study investigates the effect of a clearance error at a U-joint on the position and orientation errors of the platform of a new parallel device, cubic parallel manipulator. In this study, the limits of errors can be estimated for given conditions.

  • PDF