• Title/Summary/Keyword: Joint Moments

Search Result 131, Processing Time 0.025 seconds

Investigation of semi-rigid bolted beam connections on prefabricated frame joints

  • Irtem, E.;Turker, K.
    • Structural Engineering and Mechanics
    • /
    • v.12 no.4
    • /
    • pp.397-408
    • /
    • 2001
  • Bolted connections are used commonly in the precast reinforced concrete structures. In such structures, to perform structural analysis, behaviour of connections must be determined. In this study, elastic rotation stiffness of semi-rigid bolted beam connections, applied in industrial precast structures, are determined by finite element methods. The results obtained from numerical solutions are compared with an experimental study carried out for the same connections. Furthermore, stress distributions of the connection zone are determined and a reinforcement scheme is proposed. Thus, a more appropriate reinforcement arrangement for the connection zone is enabled. The connection joint of the prefabricated frame is described as rigid, hinged or elastic, and a static analysis of the frame system is performed for each case. Values of bending moments and displacements obtained from the three solutions are compared and the effects of elastic connection are discussed.

A bivariate extension of the Hosking and Wallis goodness-of-fit measure for regional distributions

  • Kjeldsen, Thomas Rodding;Prosdocimi, Ilaria
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.239-239
    • /
    • 2015
  • This study presents a bivariate extension of the goodness-of-fit measure for regional frequency distributions developed by Hosking and Wallis [1993] for use with the method of L-moments. Utilising the approximate joint normal distribution of the regional L-skewness and L-kurtosis, a graphical representation of the confidence region on the L-moment diagram can be constructed as an ellipsoid. Candidate distributions can then be accepted where the corresponding the oretical relationship between the L-skewness and L-kurtosis intersects the confidence region, and the chosen distribution would be the one that minimises the Mahalanobis distance measure. Based on a set of Monte Carlo simulations it is demonstrated that the new bivariate measure generally selects the true population distribution more frequently than the original method. An R-code implementation of the method is available for download free-of-charge from the GitHub code depository and will be demonstrated on a case study of annual maximum series of peak flow data from a homogeneous region in Italy.

  • PDF

Biomechanical Evaluation for Washing Machine Design Suggested Newly for Prevention of Musculoskeletal Disorders (근골격계 질환 예방을 위하여 새로이 제시된 세탁기 디자인에 대한 생체역학적 평가)

  • Cho, Young-Kuen;Choi, Hue-Seok;Kim, Hyun-Dong;Choi, Hyun-Ho;Youn, Join-In;Kim, Young-Ho;Shin, Tae-Min;Kim, Han-Sung;Lim, Do-Hyung
    • Journal of the Ergonomics Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.27-35
    • /
    • 2008
  • Recently, many studies have reported the fact that an excessively accumulated psychological and physical burden induced from physical labor conducted routinely in home and industry can be one of main reasons of musculoskeletal disorders in the working population. This fact makes increase interests in studies to reduce a risk of musculoskeletal disorders through grafting ergonomic considerations on working environment. However, there are currently limited methodologies in quantitative evaluations of new ergonomic suggestions to reduce a risk of musculoskeletal disorders. The current study is therefore performed to evaluate quantitatively effects of a design of washing machine as a new ergonomic suggestion onto prevention of musculoskeletal disorders, through application of a biomechanical evaluation methodology. For this, three-dimensional motion analysis by using musculoskeletal models with Rapid Entire Body Assessment (REBA), which has been generally used for a simple evaluation of a degree of harmfulness of the human body at specific working postures to be considered, was performed. The results of REBA did not give us enough information and their results were somewhat simple and inaccurate, but the results of the three-dimensional motion analysis give us enough information such as alteration of main muscle forces and joint moments required during washing work. All results showed that the main muscle strengths and joint moments were decreased effectively for reduction of a risk of musculoskeletal disorders during the washing work with newly designed washing machine evaluated in the current study, compared with those generated during the washing work with general washing machine. From these results, it can be concluded that a risk of the musculoskeletal disorders, which may be induced by a repetitive washing work, may be reduced through using the washing machine designed ergonomically and newly. Also, it is thought that if our ergonomic design can be applied for improvement of working environment in lifting and laying works conducted repeatedly for a treatment work of goods, which have a strong resemblance to the behaviors generated frequently during the washing work, a possibility of occurrence of the musculoskeletal disorders by the lifting and laying works may be reduced highly.

3-Dimensional Gait analysis and the relationship between lower limb alignment and knee adduction moment in elderly healthy women (3차원적 동작 분석기를 이용한 건강한 여자 노인의 하지 정렬 상태와 슬관절 내전 모멘트의 상관 관계에 관한 연구)

  • Cho, You-Mi;Lee, Wan-Hee
    • Journal of Korean Physical Therapy Science
    • /
    • v.10 no.1
    • /
    • pp.90-101
    • /
    • 2003
  • Gait analysis can provide a better understanding of how the alignment of the lower limb and foot can contribute to force observed at the knee. Anatomic and mechanical factors that affect loading in the knee pint can contribute to pathologic change seen at the knee in degenerative pint disease and should be considered in treatment plan. The purpose of this study is to present the gait analysis data and to determine whether there is any relationships between alignment of the lower limb, foot progression angle and knee pint moments in elderly healthy women with 3-dimensional motion analyzer. The results were as follows; 1. Cadence showed 114.8 steps/min, gait speed showed 1.05 m/s, time per a stride showed 1.06 sec, time per a step showed 0.53 sec, single-supporting phase was 0.41 sec, double-supporting phase was 0.24 sec, stride length was 1.04 m, Step length was 0.56 m. 2. According to the parameters of kinematics, the maximal knee flexion angle through swing phase showed left $46.82^{\circ}$, right $40.19^{\circ}$ and the maximal knee extension angle showed left $-1.32^{\circ}$, right $2.01^{\circ}$. knee varus showed left $26.90^{\circ}$, right $30.93^{\circ}$. 3. Moment, one of kinetic parameters of knee pint the maximal flexion moment showed left 0.363. Nm/kg, right 0.464 Nm/kg and maximal extension moment showed left 0.389 Nm/kg, right 0.463 Nm/kg. The maximal. adduction moment showed left 0.332 Nm/kg, right 0.379 Nm/kg and the maximal internal rotatory moment showed left 0.13 Nm/kg, right 0.140 Nm/kg. 4. On sagittal plane, the maximal power of knee joint showed left 0.571 J/kg, right 0.629 J/kg. On coronal plane, the maximal power of knee joint showed left 0.11 J/kg, right 0.12 J/kg. On transverse plane, the maximal power of knee joint showed left 0.058 J/kg, right 0.072 J/kg. 5. The subject who had varus alignment of the lower extremity had statistically higher in knee adduction moment in mid stance phase. 6. The subject who had large foot progression angle had statistically lower in knee adduction moment in late stance phase. A relationship was observed between the alignment of the lower extremity and the adduction moment of the knee joint during stance phase. Hence, we need some research to figure, out the change of adduction moment according to the sort of knee joint osteoarthritis and the normal geriatrics as well. And we also require more effective, specific therapeutic program by making use of those background of researches.

  • PDF

A Study for Improved Design Criteria of Composite Pile Joint Location based on Case Analysis (사례 분석을 통한 복합말뚝 이음위치의 설계 기준식 개선 연구)

  • Hwang, Uiseong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.3
    • /
    • pp.21-30
    • /
    • 2019
  • Composite pile, which is composed of the steel pipe pile in which the large horizontal force acts and the PHC pile in which the small horizontal force acts by a special connecting devices, is being commercialized as a base material for civil engineering structures. The core of such a composite pile can be said to be a design criterion for estimating the joint position and stability of the connection device between steel pipe pile and PHC pile. In Korea, there is no precise specification for the location of composite pile joints. In the LH Design Department (Korea Land & Housing Corporation, 2009), "Application of composite pile design and review of design book marking" was made with reference to Road Design Practice Volume 3 (Korea Expressway Corporation, 2001). this is used as a basis of the design of the composite pile. It can not be regarded as a section change of the composite pile, so it has a limitation in application. Therefore, In this study, we propose a design criterion for the location of the section of the composite pile (joint of steel pipe pile and PHC pile) and evaluate the stability and economical efficiency of it by using experimental method and analytical method. Analysis of composite pile design data installed in 79 domestic bridges abutment showed that the stresses, bending moments, and displacements acting on the pile body and connection of the pile were analyzed. Through the redesign process, it was confirmed that the stresses generated in the connecting device occur within the allowable stress values of the connecting device and the PHC pile. In conclusion, the design proposal of composite pile joint location through empirical case study in this study is an improved design method considering both stability and economical efficiency in designing composite pile.

Biomechanical Analysis on Locomotion with Lower Extremity Supporter (하체서포터 착용 이동 시의 운동역학적 분석)

  • Lee, Kyung-Il;Hong, Wan-Ki;Lee, Chul-Gab
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.2
    • /
    • pp.215-222
    • /
    • 2011
  • The purpose of this study was to analyze the effects of the use of the lower extremity supporter to ground reaction force(GRF) & EMG in women. Five women participated in the experiment conducted in the study(age: $46.7{\pm}3.5$ yrs, weight: $52.3{\pm}2.2$ kg, lower extremity height: $74.1{\pm}0.9$ cm, knee height: $40.7{\pm}1.4$ cm). The Ground reaction force was measured by AMTI ORG-6 and the Muscle activity of the lower extremity was measured by an 8-channel surface EMG system(Noraxon Myoresearch, USA, 1000Hz). We statistically compared muscle activity and ground reaction force with and without the lower-extremity supporter by one-way repeated ANOVA. The results were as follows. First, the use of the lower extremity supporter affects the ground reaction force along the anterior-posterior axis(Y). Second, the vertical(Z-axis) reaction force on the upper part of the lower extremity supporter increase because of the difference between the interval of vertical movement. Third, the muscle activity of the lateral gastrocnemius and rectus femoris was higher in the upper part of the lower extremity supporter. Further research for example, on a comparative analysis of joint moments, the effects of direct stressor on joints. and the relationship between muscle activity and joint movement, is necessary for a better understanding of the effects of the lower-extremity supporter.

Biomechanical Properties of the Anterior Walker Dependent Gait of Patients with Knee Osteoarthritis (무릎관절 골관절염 환자의 보행기 보행에서 생역학적 특성)

  • Lee, In-Hee;Kwon, Gi-Hong;Park, Sang-Young
    • The Journal of Korean Physical Therapy
    • /
    • v.25 no.5
    • /
    • pp.239-245
    • /
    • 2013
  • Purpose: Osteoarthritis occurs in many different joints of the body, causing pain, stiffness, and decreased function. The knee is the most frequently affected joint of the lower limb. The aim of this study was to investigate the differences of biomechanics between independent gait and anterior walker dependent gait of patients with osteoarthritis of the knee. Methods: Lower limb joint kinematics and kinetics were evaluated in 15 patients with knee osteoarthritis when walking independently and when walking with an anterior walker. Participants were evaluated in a gait laboratory, with self-selected gait speed and natural arm swing. Results: When walking with a dependent anterior walker, participants walked significantly faster (p<0.01), using a longer stride length (p<0.01), compared to independent gait. When walking with a dependent anterior walker, participants exhibited significantly greater knee flexion/extension motion (p<0.01) and lower knee flexion moment (p<0.05) compared to independent gait. When walking with a dependent anterior walker, participants showed significantly greater peak ankle motion (p<0.01), ankle dorsiflexion/plantarflexion moments (p<0.01), and ankle power generation (p<0.05) compared to independent gait. Conclusion: These biomechanical properties of gait, observed when participants walked with a dependent anterior walker, may be a compensatory response to impaired knee function to allow sufficient power generation for propulsion. Therefore, rehabilitative strategies for patients with osteoarthritis of the knee are needed in order to improve not only knee function but also hip and ankle function.

Steganalysis Using Joint Moment of Wavelet Subbands (웨이블렛 부밴드의 조인트 모멘트를 이용한 스테그분석)

  • Park, Tae-Hee;Hyun, Seung-Hwa;Kim, Jae-Ho;Eom, Il-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.3
    • /
    • pp.71-78
    • /
    • 2011
  • This paper propose image steganalysis scheme based on independence between parent and child subband on the multi-layer wavelet domain. The proposed method decompose cover and stego images into 12 subbands by applying 3-level Haar UWT(Undecimated Wavelet Transform), analyze statistical independency between parent and child subband. Because this independency is appeared more difference in stego image than in cover image, we can use it as feature to differenciate between cover and stego image. Therefore we extract 72D features by calculation first 3 order statistical moments from joint characteristic function between parent and child subband. Multi-layer perceptron(MLP) is applied as classifier to discriminate between cover and stego image. We test the performance of proposed scheme over various embedding rates by the LSB, SS, BSS embedding method. The proposed scheme outperforms the previous schemes in detection rate to existence of hidden message as well as exactness of discrimination.

The Comparative Study on Age-associated Gait Analysis in Normal Korean (우리나라 연령별 보행분석 비교연구)

  • Yoon, Na-Mi;Yoon, Hee-Jong;Park, Jang-Sung;Jeong, Hwa-Su;Kim, Geon
    • The Journal of Korean Physical Therapy
    • /
    • v.22 no.2
    • /
    • pp.15-23
    • /
    • 2010
  • Purpose: This study was done to establish reference data for temporo-spatial, kinematic and kinetic parameters for normal Koreans as they age. Methods: Normal adults and children without a previous history of musculoskeletal problems were enrolled in this study. The normal subjects were divided by age into three groups: Group I: children ($11.95{\pm}0.29$ years); Group II: young adults ($23.90{\pm}3.67$ years); Group III: older adults ($71.40{\pm}4.08$ years). The temporo-spatial and kinematic data were measured using 6 MX3 cameras while each subject walked through a 10 m walkway at a self-selected speed. The kinetic data were measured using 2 force plates and were calculated by inverse dynamics. Results: Motion patterns are typically associated with a specific phase of the gait cycle. Our results were as follows: 1. There were significant differences between the different age groups in temporo-spatial parameters such as cadence, double support, time of foot off, stride length, step length, and walking speed. 2. There were significant differences between the groups in kinematic parameters such as range of motion (ROM) of the hip, knee and ankle in the sagittal plane, ROM of the pelvis, hip and knee in the coronal plane and ROM of the pelvis, hip and ankle in the transverse plane. 3. There were significant differences between the groups in kinetic parameters such as joint moments of force, joint mechanical power generation or absorption and ground reaction forces. Conclusion: The results of this study can be utilized (a) as a reference for kinematic and kinetic data of gait analysis in normal Koreans, and (b) as an aide in evaluating and treating patients who have problems relating to gait.

Moment-rotation relationship of hollow-section beam-to-column steel joints with extended end-plates

  • Wang, Jia;Zhu, Haiming;Uy, Brian;Patel, Vipulkumar;Aslani, Farhad;Li, Dongxu
    • Steel and Composite Structures
    • /
    • v.29 no.6
    • /
    • pp.717-734
    • /
    • 2018
  • This paper presents the flexural performance of steel beam-to-column joints composed of hollow structural section beams and columns. A finite element (FE) model was developed incorporating geometrical and material nonlinearities to evaluate the behaviour of joints subjected to bending moments. The numerical outcomes were validated with experimental results and compared with EN1993-1-8. The demountability of the structure was discussed based on the tested specimen. A parametric analysis was carried out to investigate the effects of steel yield strength, end-plate thickness, beam thickness, column wall thickness, bolt diameter, number of bolts and location. Consequently, an analytical model was derived based on the component method to predict the moment-rotation relationships for the sub-assemblies with extended end-plates. The accuracy of the proposed model was calibrated by the experimental and numerical results. It is found that the FE model is fairly reliable to predict the initial stiffness and moment capacity of the joints, while EN1993-1-8 overestimates the initial stiffness extensively. The beam-to-column joints are shown to be demountable and reusable with a moment up to 53% of the ultimate moment capacity. The end-plate thickness and column wall thickness have a significant influence on the joint behaviour, and the layout of double bolt-rows in tension is recommended for joints with extended end-plates. The derived analytical model is capable of predicting the moment-rotation relationship of the structure.