• Title/Summary/Keyword: Joint Energy

Search Result 953, Processing Time 0.023 seconds

Dynamic Changes depending on Adaptation to Assistive Joint Stiffness in Metatarsophalangeal Joint during Human Running (인체주행 시 중족지절 관절 보조 강성에의 적응에 따른 동역학적 변화 고찰)

  • Keonyoung Oh
    • Journal of Biomedical Engineering Research
    • /
    • v.45 no.2
    • /
    • pp.57-65
    • /
    • 2024
  • Recently, several studies have been conducted to lower the cost of transport of human by adding external joint stiffness elements. However, it has not been clearly elucidated whether adaptation time is required for human subjects to adapt to the added external joint stiffness. In this study, carbon plates in the form of shoe midsoles were added to the metatarsophalangeal joint, and the lower limb joint torque and mechanical energy consumption were compared before and after a total of 5 sessions (2.5 weeks) of running. A total of 11 young healthy participants exhibited higher elastic energy storage in carbon plates in the fifth session compared to the first session, and lower power in the ankle joint. This suggests that a single training session may be insufficient to validate the efficiency effect of added joint stiffness, and the human body seems to increase the elastic energy stored in the assistive joint stiffness and its reutilization.

Very long life fatigue behaviors of 16Mn steel and welded joint

  • Liu, Yongjie;He, Chao;Huang, Chongxiang;Khan, Muhammad K.;Wang, Qingyuan
    • Structural Engineering and Mechanics
    • /
    • v.52 no.5
    • /
    • pp.889-901
    • /
    • 2014
  • Very long life fatigue tests were carried out on 16Mn steel base metal and its welded joint by using the ultrasonic fatigue testing technique. Specimen shapes (round and plate) were considered for both the base metal and welded joint. The results show that the specimens present different S-N curve characteristics in the region of $10^5-10^9$ cycles. The round specimens showed continuously decreasing tendency while plate specimens showed a steep decreasing step and an asymptotic horizontal one. The fatigue strength of round specimen was found higher than plate specimen. The fatigue strength of as-welded joint was 45.0% of the base material for butt joint and 40% for cruciform as-welded joint. It was found that fracture can still occur in butt joint beyond $5{\times}10^6$ cycles. The cruciform joint has a fatigue limit in the very long life fatigue regime ($10^7-10^9$ cycles). Fatigue strength of butt as-welded joint was much higher as compared to cruciform as-welded joint. Improvement in fatigue strength of welded joint was found due to UPT. The observation of fracture surface showed crack mainly initiated from welded toe at fusion areas or geometric discontinuity sites at the surface in butt joint and from welded toe in cruciform joint.

A Study of the Ankle Joint to Mechanical Energy in Crouching Start According to the Backward Block Inclined Angle Increase (크라우칭(Crouching) 스타트 시 뒤 블록 각도 변화에 따른 발목 관절의 기계적 에너지에 대한 연구)

  • Kwon, Moon-Seok;Shin, Seong-Hyoo
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.1
    • /
    • pp.19-28
    • /
    • 2005
  • The purpose of this study was to improve the ankle joint to mechanical energy in Crouching start according to the backward block inclined angle(F, F(+1), F(+2)) increase. For purpose of this study the ankle joint was considered as a single hinge joint rotation about a transverse axis. A two-dimensional(sagittal plane) analysis was performed on data collected from 3 spriters(university student). During Crouching start, the ankle joint moment showed a similar patterns according to the backward block inclined angle increase. The peak values of ankle joint moment was plantar flexion approximately 80% throughout the contact phase for Crouching start. The absorbed and generated energy represented different values from the backward block inclined angle increase at ankle joint. On the backward block inclined angle F, subject A($55^{\circ}$) and C($50^{\circ}$) Produced energy generation more than other block inclined angles. On the backward block inclined angle F(+2), subject B($50^{\circ}$) showed largest energy generation.

A Comparative Analysis of Energy Policies and Joint R&D Programs in Advanced Nations

  • Kim, Eun-Sun;Koo, Young-Duk;Park, Young-Seo
    • Journal of information and communication convergence engineering
    • /
    • v.2 no.4
    • /
    • pp.247-250
    • /
    • 2004
  • Currently, advanced countries such as European countries and Japan invest lots of efforts to develop improvement of electric power production and supply, environmental countermeasure, and renewable energy development. Accordingly, Korea has been putting efforts to all kinds of electric related technical development based on the mid-long term plan. Further, it is necessary to increase effectiveness of R&D investment by propelling joint research activities with advanced countries for development of important technologies. Based on this background, this study tries to find thought-provoking suggestions of energy projects, programs and policies. For a comparative analysis, Japan which is similar to Korea in terms of market size and policies, and EU where joint research has been actively carried out among nations are analyzed and compared to policies and joint R&D activities of Korea.

Development of Compliant and Dissipative Joints in Coupled Thin Plates for Vibrational Energy Flow Analysis (평판 구조물의 진동 파워흐름해석을 위한 비보존 조인트 개발)

  • Song, Jee-Hun;Hong, Suk-Yoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.10
    • /
    • pp.1082-1090
    • /
    • 2008
  • In this paper, a general solution for the vibrational energy and intensity distribution through a compliant and dissipative joint between plate structures is derived on the basis of energy flow analysis (EFA). The joints are modeled by four sets of springs and dashpots to show their compliancy and dissipation in all four degrees of freedom. First, for the EFA, the power transmission and reflection coefficients for the joint on coupled plate structures connected at arbitrary angles were derived by the wave transmission approach. In numerical applications, EFA is performed using the derived coefficients for coupled plate structures under various joint properties, excitation frequencies, coupling angles, and internal loss factors. Numerical results of the vibrational energy distribution showed that the developed compliant and dissipative joint model successfully predicted the joint characteristics of practical structures vibrating in the medium-to-high frequency ranges. Moreover, the intensity distribution of a compliant and dissipative joint is described.

Dynamic Parameter Analysis of Bolted Joint (체결력에 따른 볼트결합부의 동적 파라미터 해석)

  • Baek, Sung-Nam;Ji, Tae-Han;Park, Young-Pil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.1
    • /
    • pp.53-67
    • /
    • 1996
  • The dynamic characteristics of mechanical structure are strongly affected by the properties of joint parameters. In this study, the test structures are constructed with two beams which are clamped by bolts, and a bolted joint which is modelled as a lumped stiffness element. To idientify the dynamic joint parameters with variance of clamping torque of bolts, the sensitivity analysis and the mode energy analysis methods are investigated experimentally. As a reult of these two methods, stiffnesses of bolted joint are experimentally found to increase as the clamping torque increases. These stiffnesses identified from the sensitivity analysis and the mode energy analysis method have some difference.

Fatigue Strength Evaluation on the IB-Type Spot Welded Lap Joint of 304 Stainless Steel Part 2 : Strain energy Density (304 스테인레스 박강판 IB형 용접이음재의 피로강도 평가 Part 2 : 변형에너지 밀도에 의한 평가)

  • 손일선;오세빈;배동호
    • Journal of Welding and Joining
    • /
    • v.17 no.6
    • /
    • pp.32-37
    • /
    • 1999
  • Since stainless steel plates have good mechanical properties, weldability, appearance and resistance of corrosion, these are traditionally used for vehicles such as the bus and the train. And they are mainly fabricated by spot welding. But fatigue strength of their spot welded joint is considerably influenced by welding conditions as well as geometrical factors. Thus a reasonable and systematic criterion for long life design of spot welded body structure must be established. In this report, strain energy density was analyzed by using 3-dimensional finite element model about the IB-type spot welded lap joint under tension-shear load. Fatigue tests were conducted on them having various thickness, joint angle, lapped length and width. From their results, it was found that fatigue strength of the IB-type spot welded lap joints could be effectively and systematically rearranged by strain energy density at the edge of nugget.

  • PDF

X-joint stress concentration of offshore wind turbine jacket support structures (해상 풍력 발전 Jacket 지지구조물의 X-joint 응력 집중 현상)

  • Lee, Jusang;Park, Hyunchul;Shi, Wei;Lee, Jongsun;Beak, Jaeha
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.39.1-39.1
    • /
    • 2011
  • Due to less turbulence and no land limitation, offshore wind energy gets more attention than onshore. Jacket structure is regarded as a suitable solution for the water depth ranging from 30 to 80 meters. In general, joint stress concentration of jacket support structures affects their fatigue life. Nowadays, most jacket structures for offshore wind turbines have tubular X-joint between legs. In this paper, a study on X-joint stress concentration of offshore wind turbine jacket structure is performed by using 50m water depth model. Stress of X-joint on offshore environmental conditions are discussed.

  • PDF

A Comparative Study About the Effect of Nonablative Laser and Thermal energy on Rabbit Knee Joint Capsular Properties (비융해성 LASER 및 열에너지의 가토 슬관절막에 대한 영향 비교)

  • Byun Ki-Yong;Rhee Kwang-Jin;Lee Jun-Ho
    • Clinics in Shoulder and Elbow
    • /
    • v.4 no.1
    • /
    • pp.1-12
    • /
    • 2001
  • Purpose: To evaluate the histologic effect(LM and EM findings)of nonablative LASER and thermal energy on knee joint capsule of rabbit. Material and Methods: The nonablative LASER and thermal energy was applied to the rabits(average age 36 weeks, weight 5 ㎏). There were divided into 4 groups with 6 rabbits in each. The group I received 6 watts of LASER, group Ⅱ 12 watts of LASER, group Ⅲ 60° of thermal energy, and group Ⅳ 70° of thermal energy. The histologic study included H-E, Massons trichrome stain and electron microscopy at immediate, 3 weeks and 6 weeks after operation. Results: The histologic finding in immediate after operation was shown a fibrous degeneration of collagen on all groups and related to the energy level. The histologic finding after 3 weeks showed fibrosis and this fibrosis related the level of energy. Especially the group IV was shown flattening of capsule and deep fibrosis. The histologic finding after 6 weeks was shown marked recovery of collagen arrangement and capillary proliferation in group Ⅰ,Ⅱ and Ⅲ. But in the group Ⅳ not recovered. Conclusion: The nonablative LASER or thermal energy can cause degeneration, fibrosis and contracture of joint capsular collagen.

  • PDF

Study on seismic behavior of fabricated beam-column bolted joint

  • Zhang, Yu;Ding, Kewei
    • Structural Engineering and Mechanics
    • /
    • v.82 no.6
    • /
    • pp.801-812
    • /
    • 2022
  • To better promote the development of fabricated buildings, this paper studies the seismic behavior of precast concrete beam-column bolted joint under vertical low cyclic loading. The experimental results show that cracks appear in the beam-column joint core area. Meanwhile, the concrete and the grade 5.6 bolts are damaged and deformed, respectively. Specifically, the overall structure of the beam-column joint remains intact, and the bolts have good energy dissipation capacity. Based on the experimental study, a new method of beam-column bolted connection is proposed in simulation analysis. The simulation results show that the bolts deform in the core area of the new beam-column joint, which enhances the concrete shear capacity legitimately and protects the T-end of the beam against shear failure. To summarize, both the experimental joint and the simulated joint prolong the service life by replacing the bolts under the seismic loading. The research results provide a reference for applications of the fabricated beam-column joint.