• 제목/요약/키워드: Joint Controller

검색결과 313건 처리시간 0.032초

유연성 관절.매니퓰레이터에 대한 적응제어기 설계 및 응용 (An Adaptive Controller Design and its Application for a Flexible Joints Manipulator)

  • 노희석;김응석;이건영;양해원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1992년도 하계학술대회 논문집 A
    • /
    • pp.391-393
    • /
    • 1992
  • This paper proposes an adaptive control system using a 80286 microprocessor-based system and DC servo motors for the control of flexible joint manipulator. In this paper, we construct the controller based on a singular perturbation strategy damping out the elastic oscillations at the joints. we added to the controller the compensator for damping the joint and the term for decreasing the position error between the actuator and the link in order to improve the asymptotical convergence of the position of the link. It is shown that the implementation of this control algorithm can be practical.

  • PDF

무인 FA를 위한 플렉시블 그리퍼 설계에 관한 연구 (A Study on Design of Flexible Gripper for Unmanned FA)

  • 김현근;김기복;김태관
    • 한국산업융합학회 논문집
    • /
    • 제18권3호
    • /
    • pp.167-172
    • /
    • 2015
  • In this paper, we propose a new approach to design and control a smart gripper of robot system. A control method for flexible grasping a object in partially unknown environment was proposed, where a proximate sensor detecting the distance between the fingertip and object was used. Based on the proximate sensor signal the finger motion controller could plan the grasping process divided in three phases. The first step is scanning process which two first joints were moved to mid-position of the detected range by a state-variable feedback position controller, after the scanning was finished. The contact force of fingertip was then controlled using the detection sensor of the servo controller for finger joint control. The proposed grasping planning was tested on rectangular bar.

GA-fuzzy $P^2ID$ Control System for Flexible-joint Robot Arm

  • Tangcharoensuk, Teranun;Purahong, Boonchana;Sooraksa, Pitikhate
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.969-972
    • /
    • 2005
  • This paper presents a GA-fuzzy $P^2ID$ control system for the flexible-joint robot arm. This controller is designed based on the parameter adjustment using fuzzy logic and genetic algorithms. According to the simulations, the better performance has been achieved acquired that the robot moved smoothly and met its required objectives. The results of comparison between 8 parameters and 10 parameters can be conclusion that the 10 parameters have setting time little than 8 parameters. In usability can be use 8 or 10 parameters these one.

  • PDF

The Vibration Control of Flexible Manipulator using A Reference Trajectory Command and Fuzzy Controller

  • Park, Yang-Su;Kang, Jeng-Ho;Park, Yoon-Myung;Cho, Yong-Gab
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.67.3-67
    • /
    • 2001
  • A fuzzy control strategy is described which is utilized to control the joint angle and tip deflection in single flexible manipulator. In this paper, an existing model for a single flexible manipulator is used f3r the initial development of an FLC. One FLC is designed to govern the joint angle of the manipulator as it is rotated from one position to another, and a second FLC is designed to attenuate the tip deflection which result from joint angle body motion. Reference Trajectory Command is an important method to reduce vibration in flexible beam. This paper presents a very simple command control shaping which eliminates multiple mode residual vibration in a flexible beam combined fuzzy controller ...

  • PDF

건구동식 로봇 의수용 착용형 인터페이스 (A Wearable Interface for Tendon-driven Robotic Hand Prosthesis)

  • 정성윤;박찬영;배주환;문인혁
    • 제어로봇시스템학회논문지
    • /
    • 제16권4호
    • /
    • pp.374-380
    • /
    • 2010
  • This paper proposes a wearable interface for a tendon-driven robotic hand prosthesis. The proposed interface is composed of a dataglove to measure finger and wrist joint angle, and a micro-control board with a wireless RF module. The interface is used for posture control of the robotic hand prosthesis. The measured joint angles by the dataglove are transferred to the main controller via the wireless module. The controller works for directly controlling the joint angle of the hand or for recognizing hand postures using a pattern recognition method such as LDA and k-NN. The recognized hand postures in this study are the paper, the rock, the scissors, the precision grasp, and the tip grasp. In experiments, we show the performances of the wearable interface including the pattern recognition method.

이동물체 추적을 위한 퍼지제어 시스템 설계 (A Design of Fuzzy Control System for Moving Object Tracking)

  • 강석범;김재기;양태규
    • 한국정보통신학회논문지
    • /
    • 제5권4호
    • /
    • pp.738-745
    • /
    • 2001
  • 본 논문에서는 추적시스템이 3차원 공간을 움직이는 이동물체를 추적한다. 오차없이 추적하기 위하여 제어시스템은 인공지능을 가진 퍼지제어기를 사용하였다. 추적시스템은 요(yaw)운동과 롤(roll) 운동을 통해 3차원 공간을 추적한다. 추적시스템으로는 2링크 매니플레이터를 사용하였고, 매니플레이터의 관절각 $\theta_1는 0^{\circ}에서\; 360^{\circ}$까지 회전 할 수 있으며, 관절각 $\theta_a는 0^{\circ}에서\; 180^{\circ}$까지 회전할 수 있다. 퍼지제어기의 퍼지화 방법은 싱클톤방법, 제어 규칙은 25개, 추론법은 간략화된 Mamdani의 추론법, 비퍼지화 방법은 간략화된 무게 중심법을 사용하였다. 시뮬레이션은 퍼지제어기의 성능을 평가하기 위해 같은 조건하에 CTM제어기와 비교하였다. 매니플레이터에 외란 토크를 적용하지 않았을 때 두 제어기 모두 추적오차가 0에 가까웠으며, 외란토크가 0.4N 일 때 CTM제어기를 사용한 경우에는 퍼지제어기를 사용한 경우보다 시뮬레이션결과 절대 오차 합이 10배 이상 큼을 알 수 있다. 퍼지 제어기가 CTM제어기보다 외란토크의 추가시 강함을 검증하였다.

  • PDF

단일 구동부를 갖는 2축 도립 진자를 위한 제어기 구현 (An implementation of a controller for a double inverted pendulum with a single actuator)

  • 남노현;이건영
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.257-260
    • /
    • 1997
  • In this paper, the double inverted pendulum having a single actuator is built and the controller for the system is proposed. The lower link is hinged on the plate to free for rotation in the x-z plane. The upper link is connected to the lower link through a DC motor. The double inverted pendulum built can be kept upright posture by controlling the position of the upper link even though the proposed inverted pendulum has no actuator in lower hinge. The algorithm to control the inverted pendulum is consisted of a state feedback controller within a linearizable range and a fuzzy logic controller coupled with a feedback linearization control for the rest of the range. Concept of the virtual work is employed to drive the linearlized model for the state feedback controller. The feedback linearization controller drives a DC motor with the modified reference joint angle from the fuzzy controller which adjusts a upright posture of a proposed pendulum system. Finally, the experiments are conducted to show the validity of the proposed controller.

  • PDF

예측. 신경망 제어기를 이용한 유연 기계 시스템의 운동제어 (Motion Control of Flexible Mechanical Systems Using Predictive & Neural Controller)

  • 김정석;이시복
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.538-541
    • /
    • 1995
  • Joint flexibilities and frictional uncertainties are known to be a major cause of performance degration in motion control systems. This paper investigates the modeling and compensation of these undesired effects. A hybrid controller, which consists of a predictive controller and a neural network controller, is designed to overcome these undesired effects. Also learning scheme for friction uncertainies, which don't interfere with feedback controller dynamics, is discussed. Through simulation works with two inetia-torsional spring system having Coulomb friction, the effectiveness of the proposed hybrid controller was tested. The proposed predictive & neural network hybrid controller shows better performance over one when only predictive controller used.

  • PDF

단일 유연 링크 매니퓰레이터의 복합 퍼지 제어 (Composite Fuzzy Control of a Single Flexible Link Manipulator)

  • 김재승;이수한
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.353-353
    • /
    • 2000
  • To control a light weight flexible manipulator, a composite fuzzy controller is proposed. The controller is designed based on two time scaled models. A singular perturbation technique is applied for deriving the models. The proposed controller, however, does not use the complex equilibrium manifold equations, which are usually needed in the controller based on the two time scaled models. The controller for a slow sub-model and a fast sub-model are T-S type fuzzy controllers, which use 3 linguistic variables for each sub-model. A step trajectory is used in simulations as a reference trajectory of joint motions. The results of simulations with the proposed controller show excellent damping of flexible motions compared to a controller with derivative control of flexible motions.

  • PDF

전자기 구동장치를 이용한 병렬형 6자유도 스테이지의 위치제어 (A Position Control for a Parallel Stage with 6 degrees of freedom Using Magnetic Actuators)

  • 이세한
    • 한국정밀공학회지
    • /
    • 제22권7호
    • /
    • pp.102-111
    • /
    • 2005
  • In this paper, we address a position control for a parallel stage, which is levitated and driven by electric magnetic force. This consists of a levitating object (called platen) with 4 permanent magnetic linear synchronous motors in parallel. Each motor generates vertical force for suspension against gravity and propulsion force horizontally as well. This stage can generate six degrees of freedom motion by the vertical and horizontal force. A dynamic equation of the stage system is derived based on Newton-Euler method and it's special Jacobian matrix describing a relation between the limited velocity and Cartesian velocity is done. There are proposed two control methods for positioning which are Cartesian space controller and Actuator space controller. The control performance of the Cartesian space controller is better than the Actuator space controller in task space trajectory while the Actuator space controller is simpler than the Cartesian space controller in controller realization.