• Title/Summary/Keyword: Joint Compliance

Search Result 118, Processing Time 0.027 seconds

Measurement of Biomechanical Property of Chondrocyte (연골세포의 기계적 물성치 측정)

  • ;Daehwan Shin
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.154-157
    • /
    • 2002
  • A cyto-indentation technique was used to obtain the biomechanical compressive compliance property of an chondrocyte cell attached to glass surface, which was tried to generate joint cartilage by tissue engineering. Piezo-transducer system and dual photo-diode system were used to conduct mechanical indentation through displacement-controlled testing and the measurement of corresponding cell reaction force. The Poisson's ratio of 0.37 was quoted from other report. The compressive compliance of chondrocyte, that was determined by elastic contact theory, was 1.38${\pm}$0.057 kPa. This value is 30% higher than that of MG63 osteoblast-like cell. The cyto-indentation technique employed in this study is so precise that it can quantify the biomechanical property of single cell.

  • PDF

Comparison of Seismic Performance of Steel Moment Frame according to Different Analytic Joint Models (국내 철골골조의 접합부모델에 따른 내진성능 비교)

  • 이준석;한상환;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.317-323
    • /
    • 2000
  • The purpose of this study is to compare the seismic resistant capacity inherent in ductile moment resisting frames using two different joint modeling. The difference between these two models is the capability for considering the panel zone deformation. For this purpose, 5 story steel moment frame is designed in compliance to the Korean seismic design provisions and the steel structure design standard. Nonlinear Static Procedure(NSP) and Nonlinear Dynamic Procedure(NDP) of this structure are carried out using two different joint models. Based on the results of NSP and NDP, the sensitivity of the response to analytical modeling is appraised. Also, it is proposed that for the highrise steel structures, the joint deformation should be accounted properly by the analytical model.

  • PDF

Ground Beam-Joint Topology Optimization for Design and Assembly of Multi-Piece Frame Structures (그라운드 빔 조인트 기반 위상최적화법을 이용한 프레임 구조물의 조립 위치 및 강도 설정)

  • Jang, Gang-Won;Kim, Myeong-Jin;Kim, Yun-Yeong
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.688-693
    • /
    • 2007
  • Most frame structures cannot be manufactured in a single-piece form. Ideally, when a structure is built up by assembling multi pieces, assembly at the joints should be rigidly performed enough to have almost full stiffness, which is difficult for practical reasons such as manufacturing cost and time. In this research, we aim to develop a manufacturability-oriented compliance-minimizing topology optimization using a ground beam model incorporating additional zero-length elastic joint elements. In the present formulation, design variables control the stiffness of zero-length elastic joints, not the stiffness of beams. Because joint stiffness values at the converged state can be utilized to select candidate assembly locations and their strengths, the technique is extremely useful to design multi-piece frame structures. An optimal layout is also extracted based on the stiffness values.

  • PDF

A Study on Compliance Robot Using a PID Adaptive Controller (PID 적응 제어기를 이용한 컴플라이언스 로보트에 대한 연구)

  • Kim, Seung-Woo;Kang, Moon-Sik;Koh, Jae-Won;Park, Mign-Yong;Lee, Sang-Bae
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.2
    • /
    • pp.105-110
    • /
    • 1990
  • In this paper, a compliance robot control algorithm using a PID adaptive controller is proposed. The compliance robot is suitable for the tasks in contact with environment, such as assembly operation or surface processing. A hybrid robot control method can control force and position simultaneously and two independant feedback closed loops are formed in this method. Because the compliance robot is operated in contact with environment, it is very difficult to obtain linear model of dynamics for this robot. In order to overcome this difficulty, a PID adaptive controller independant of robot dynamics is applied to the compliance robot. The proposed control algorithm for the compliance robot was analyzed and conformed by simulating the surface processing task by a two-joint robot.

  • PDF

Analysis on the Interface Edge Crack in Aluminum Bonded Single Lap-joint (알루미늄 단순겹치기 접착이음의 에지계면균열에 대한 연구)

  • Yu, Y.C.;Park, J.H.;Jeong, E.S.;Yi, W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.655-659
    • /
    • 1997
  • The analysis of cracks at the interface between dissimilar materilar has received a great deal of attention in recent years. In this paper we conducted the static tensile test for the aluminum bonded single lap-joint with the interface edge crack. Comparing this results, that is ultimate load and strain value of aluminum adherend by strain gauge with the fracture mechanics parameters, compliance and stress intensity factors acquied from the boundary element analysis, we concluded that there are critical value of crack length to provoke the interface fracture.

  • PDF

Hybrid Motion Blending Algorithm of 3-Axis SCARA Robot based on $Labview^{(R)}$ using Parametric Interpolation (매개변수를 이용한 $Labview^{(R)}$ 기반의 3축 SCARA로봇의 이종모션 제어 알고리즘)

  • Chung, Won-Jee;Ju, Ji-Hun;Lee, Kee-Sang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.2
    • /
    • pp.154-161
    • /
    • 2009
  • In order to implement continuous-path motion on a robot, it is necessary to blend one joint motion to another joint motion near a via point in a trapezoidal form of joint velocity. First, the velocity superposition using parametric interpolation is proposed. Hybrid motion blending is defined as the blending of different two type's motions such as blending of joint motion with linear motion, in the neighborhood of a via point. Second, hybrid motion blending algorithm is proposed based on velocity superposition using parametric interpolation. By using a 3-axis SCARA (Selective Compliance Assembly Robot Arm) robot with $LabVIEW^{(R)}$ $controller^{(1)}$, the velocity superposition algorithm using parametric interpolation is shown to result in less vibration, compared with PTP(Point- To-Point) motion and Kim's algorithm. Moreover, the hybrid motion $algorithm^{(2)}$ is implemented on the robot using $LabVIEW^{(R)(1)}$ programming, which is confirmed by showing the end-effector path of joint-linear hybrid motion.

Experimental Verification of Variable Radius Model and Stiffness Model for Twisted String Actuators (TSAs) (줄 꼬임 구동기의 가변 반지름 모델과 강성 모델에 대한 실험적 검증)

  • Park, Jihyuk;Kim, Kyung-Soo;Kim, Soohyun
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.4
    • /
    • pp.419-424
    • /
    • 2017
  • Twisted string actuators (TSAs) are tendon-driven actuators that provide high transmission ratios. Twisting a string reduces the length of the string and generates a linear motion of the actuators. In particular, TSAs have characteristic properties (compliance) that are advantageous for operations that need to interact with the external environment. This compliance has the advantage of being robust to disturbance in force control, but it is disadvantageous for precise control because the modeling is inaccurate. In fact, many previous studies have covered the TSA model, but the model is still inadequate to be applied to actual robot control. In this paper, we introduce a modified variable radius model of TASs and experimentally demonstrate that the modified variable radius model is correct compared to the conventional variable radius string model. In addition, the elastic characteristics of the TSAs are discussed along with the experimental results.

Development of adaptive gait algorithm for IWR biped robot (이족보행로보트 IWR을 위한 적응걸음새 알고리즘 개발)

  • 임선호;김진걸
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.113-118
    • /
    • 1993
  • This paper represents mechanical compliance & ZMP(Zero Moment Point) control algorithm for IWR(Inha Walking Robot) system. In case of walking in different environments, a biped walking robot must vary its gait(walking period or step length, etc.) according to the environments. However, most of biped walking robots do not have the capability to change their gaits or need more complex control algorithm, because ZMP cannot be defined in their control algorithm. Therefore new linear type with balancing joint is proposed which is used as an aid in balancing & ZMP control itself. In IWR system, ZMP can be defined by solving differential equations and it does not need to be predefined ZMP trajectory. Furthermore we can input the desired ZMP position. In parallel with the development, we also considered a mechanical compliance for reducing the inverse kinematics, dynamics and the control complexity. It will figure out some powerful adaptation with 3D irregular terrains.

  • PDF

A method of compliance control of redundant manipulators

  • Choi, H.R.;Chung, W.K.;Youm, Y.;Yoshikawa, T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.76-81
    • /
    • 1994
  • A compliance control method of redundant manipulators is presented. This method is based on the new stiffness model, which allows us to modulate accurate joint stiffness of realizing the end effector stiffness to be varied with task requirements. Control model is developed and by implementing the proposed method in a three-dof(degree of freedom) planar redundant manipulator, its effectiveness is validated.

  • PDF

A Study on the Investment Level and Administrative Competence of Information Security by Industry (산업별 정보보안의 투자 수준과 관리 역량에 관한 연구)

  • Jung Byoungho;Joo Hyungkun
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.19 no.2
    • /
    • pp.89-102
    • /
    • 2023
  • The purpose of this study is to examine what are the important variables for information security compliance and whether the information security investment by the industry is different. To comply with the information security policies, the organization must establish measures to prevent or resolve information security incidents. This research process consists of four stages, and the analysis method was conducted with the categorical regression analysis and the correspondence analysis. The first analysis analyzed the independent variables that affect security regulations compliance. The rest of the analysis was conducted by industry in the order of security compliance regulations, manpower investment, and budget investment. As a result of the first analysis, this had positive effects on an organization and personal information protection awareness, joint operation organization of information protection, manpower and budget investment, corporate size, and industry. The correspondence analysis was conducted from the second analysis to the fourth analysis and it analyzed the differences in information security investment by industry. The second analysis showed that the construction industry, science and technology industry, and finance industry have higher compliance with security regulations than other industries. The third analysis showed that the financial industry and the science and technology industry were higher than other industries. The last analysis showed that the financial industry was higher than other industries. The theoretical contribution of this study provided the basis for updating the information security theory. The practical contribution of this study requires government support to reduce information security deviations by industry.