• 제목/요약/키워드: Joint Bayesian Method

검색결과 23건 처리시간 0.023초

Estimation of Interaction Effects among Nucleotide Sequence Variants in Animal Genomes

  • Lee, Chaeyoung;Kim, Younyoung
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제22권1호
    • /
    • pp.124-130
    • /
    • 2009
  • Estimating genetic interaction effects in animal genomics would be one of the most challenging studies because the phenotypic variation for economically important traits might be largely explained by interaction effects among multiple nucleotide sequence variants under various environmental exposures. Genetic improvement of economic animals would be expected by understanding multi-locus genetic interaction effects associated with economic traits. Most analyses in animal breeding and genetics, however, have excluded the possibility of genetic interaction effects in their analytical models. This review discusses a historical estimation of the genetic interaction and difficulties in analyzing the interaction effects. Furthermore, two recently developed methods for assessing genetic interactions are introduced to animal genomics. One is the restricted partition method, as a nonparametric grouping-based approach, that iteratively utilizes grouping of genotypes with the smallest difference into a new group, and the other is the Bayesian method that draws inferences about the genetic interaction effects based on their marginal posterior distributions and attains the marginalization of the joint posterior distribution through Gibbs sampling as a Markov chain Monte Carlo. Further developing appropriate and efficient methods for assessing genetic interactions would be urgent to achieve accurate understanding of genetic architecture for complex traits of economic animals.

SHM-based probabilistic representation of wind properties: statistical analysis and bivariate modeling

  • Ye, X.W.;Yuan, L.;Xi, P.S.;Liu, H.
    • Smart Structures and Systems
    • /
    • 제21권5호
    • /
    • pp.591-600
    • /
    • 2018
  • The probabilistic characterization of wind field characteristics is a significant task for fatigue reliability assessment of long-span railway bridges in wind-prone regions. In consideration of the effect of wind direction, the stochastic properties of wind field should be represented by a bivariate statistical model of wind speed and direction. This paper presents the construction of the bivariate model of wind speed and direction at the site of a railway arch bridge by use of the long-term structural health monitoring (SHM) data. The wind characteristics are derived by analyzing the real-time wind monitoring data, such as the mean wind speed and direction, turbulence intensity, turbulence integral scale, and power spectral density. A sequential quadratic programming (SQP) algorithm-based finite mixture modeling method is proposed to formulate the joint distribution model of wind speed and direction. For the probability density function (PDF) of wind speed, a double-parameter Weibull distribution function is utilized, and a von Mises distribution function is applied to represent the PDF of wind direction. The SQP algorithm with multi-start points is used to estimate the parameters in the bivariate model, namely Weibull-von Mises mixture model. One-year wind monitoring data are selected to validate the effectiveness of the proposed modeling method. The optimal model is jointly evaluated by the Bayesian information criterion (BIC) and coefficient of determination, $R^2$. The obtained results indicate that the proposed SQP algorithm-based finite mixture modeling method can effectively establish the bivariate model of wind speed and direction. The established bivariate model of wind speed and direction will facilitate the wind-induced fatigue reliability assessment of long-span bridges.

Movie Choice under Joint Decision: Reassessment of Online WOM Effect

  • Kim, Youngju;Kim, Jaehwan
    • Asia Marketing Journal
    • /
    • 제15권1호
    • /
    • pp.155-168
    • /
    • 2013
  • This study describes consumers' movie choices in conjunction with other group members and attempts to reassess the effect of the online word of mouth (WOM) source in a joint decision context. The tendency of many people to go to movies in groups has been mentioned in previous literature but there is no modeling research that studies movie choice from the group decision perspective. We found that ignoring the group movie-going perspective can result in a misunderstanding, especially underestimation of genre preference and the impact of the WOM variables. Most of the studies to measure online WOM effects were done at the aggregate level, and the role of online WOM variables(volume vs valence) is mixed in the literature. We postulate that group-level analysis might offer insight to resolve these mixed understanding of WOM effects in the literature. We implemented the study via a random effect model with group-level heterogeneity. Romance, drama, and action were selected as genre variables; valence and volume were selected as online WOM variables. A choice-based conjoint survey was used for data collection and the models was estimated via Bayesian MCMC method. The empirical results show that (i) both genre and online WOM are important variables when consumers choose movies, especially as group, and (ii) the WOM valence effect are amplified more than the volume effect does as individuals are engaged in group decision. This research contributes to the literature in several ways. First, we investigate movie choice from a group movie-going perspective that is more realistic and consistent with the market behavior. Secondly, the study sheds new light on the WOM effect. At group-level, both valence and volume significantly affect movie choices, which adds to the understanding of the role of online WOM in consumers' movie choice.

  • PDF