• Title/Summary/Keyword: Joint Action

Search Result 279, Processing Time 0.028 seconds

Interaction of internal forces of exterior beam-column joints of reinforced concrete frames under seismic action

  • Zhou, Hua;Zhang, Zhisheng
    • Structural Engineering and Mechanics
    • /
    • v.44 no.2
    • /
    • pp.197-217
    • /
    • 2012
  • Detailed analysis of internal forces of exterior beam-column joints of RC frames under seismic action is reported in this paper. A formula is derived for calculating the average joint shear from the column shears, and a formula is proposed to estimate torque in eccentric joints induced by seismic action. Average joint shear stress and strain are defined consistently for exterior joints, which can be used to establish joint shear constitutive relationship. Numerical results of shear, bending moment and torque in joints induced by seismic action are presented for a pair of concentric and eccentric exterior connections extracted from a seismically designed RC frame, and two sections located at the levels of beam bottom and top reinforcement, respectively, are identified as the critical joint sections for evaluating seismic joint behavior. A simplified analysis of the effects of joint shear and torque on the flexural strengths of the critical joint sections is made for the two connections extracted from the frame, and the results indicate that joint shear and torque induced by a strong earthquake may lead to "joint-hinging" mechanism of seismically designed RC frames.

Deep learning-based Human Action Recognition Technique Considering the Spatio-Temporal Relationship of Joints (관절의 시·공간적 관계를 고려한 딥러닝 기반의 행동인식 기법)

  • Choi, Inkyu;Song, Hyok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.413-415
    • /
    • 2022
  • Since human joints can be used as useful information for analyzing human behavior as a component of the human body, many studies have been conducted on human action recognition using joint information. However, it is a very complex problem to recognize human action that changes every moment using only each independent joint information. Therefore, an additional information extraction method to be used for learning and an algorithm that considers the current state based on the past state are needed. In this paper, we propose a human action recognition technique considering the positional relationship of connected joints and the change of the position of each joint over time. Using the pre-trained joint extraction model, position information of each joint is obtained, and bone information is extracted using the difference vector between the connected joints. In addition, a simplified neural network is constructed according to the two types of inputs, and spatio-temporal features are extracted by adding LSTM. As a result of the experiment using a dataset consisting of 9 behaviors, it was confirmed that when the action recognition accuracy was measured considering the temporal and spatial relationship features of each joint, it showed superior performance compared to the result using only single joint information.

  • PDF

Customer-Supplier Joint Action & Shared Results (구매-공급자간의 공동활동과 그에 따른 결과의 공유)

  • Jung, Seung-Ho
    • IE interfaces
    • /
    • v.13 no.3
    • /
    • pp.306-319
    • /
    • 2000
  • The purpose of this research is to study customer-supplier relationships, particularly their partnerships, to help managers and practitioners successfully design, develop, implement and deploy tools and joint practices as a means for an effective supply chain management (SCM). To achieve this purpose, a total of 1,811 potential survey questionnaire respondents responsible for purchasing, sales/marketing, quality-, and production- or operations-related functions of U.S. private manufacturing companies in SIC 35, 36, and 37 were used to collect quantitative data. Using 172 usable survey questionnaire responses, eight hypothesized relationships were tested using two independent (joint use of specific tools and joint practices) and four dependent variables (informed partners, role integrity, conflict resolution, and mutuality). From the overall perspective (customer+supplier), organizations with higher levels of joint action have higher degrees of informed partners whereas organizations with higher levels of joint action resolve conflicts formally and do not have higher degrees of mutuality.

  • PDF

Interaction of internal forces of interior beam-column joints of reinforced concrete frames under seismic action

  • Zhou, Hua;Zhang, Jiangli
    • Structural Engineering and Mechanics
    • /
    • v.52 no.2
    • /
    • pp.427-443
    • /
    • 2014
  • This paper presents detailed analysis of the internal forces of interior beam-column joints of reinforced concrete (RC) frames under seismic action, identifies critical joint sections, proposes consistent definitions of average joint shear stress and average joint shear strain, derives formulas for calculating average joint shear and joint torque, and reports simplified analysis of the effects of joint shear and torque on the flexural strengths of critical joint sections. Numerical results of internal joint forces and flexural strengths of critical joint sections are presented for a pair of concentric and eccentric interior connections extracted from a seismically designed RC frame. The results indicate that effects of joint shear and torque may reduce the column-to-beam flexural strength ratios to below unity and lead to "joint-yielding mechanism" for seismically designed interior connections. The information presented in this paper aims to provide some new insight into the seismic behavior of interior beam-column joints and form a preliminary basis for analyzing the complicated interaction of internal joint forces.

An Evaluation Method of Taekwondo Poomsae Performance

  • Thi Thuy Hoang;Heejune Ahn
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.4
    • /
    • pp.337-345
    • /
    • 2023
  • In this study, we formulated a method that evaluates Taekwondo Poomsae performance using a series of choreographed training movements. Despite recent achievements in 3D human pose estimation (HPE) performance, the analysis of human actions remains challenging. In particular, Taekwondo Poomsae action analysis is challenging owing to the absence of time synchronization data and necessity to compare postures, rather than directly relying on joint locations owing to differences in human shapes. To address these challenges, we first decomposed human joint representation into joint rotation (posture) and limb length (body shape), then synchronized a comparison between test and reference pose sequences using DTW (dynamic time warping), and finally compared pose angles for each joint. Experimental results demonstrate that our method successfully synchronizes test action sequences with the reference sequence and reflects a considerable gap in performance between practitioners and professionals. Thus, our method can detect incorrect poses and help practitioners improve accuracy, balance, and speed of movement.

Studies on CFST column to steel beam joints using endplates and long bolts under central column removal

  • Gao, Shan;Yang, Bo;Guo, Lanhui;Xu, Man;Fu, Feng
    • Steel and Composite Structures
    • /
    • v.42 no.2
    • /
    • pp.161-172
    • /
    • 2022
  • In this paper, four specimens of CFST column joints with endplates and long bolts are tested in the scenario of progressive collapse. Flush endplate and extended endplate are both adopted in this study. The experimental results show that increasing the thickness of the endplate could improve the behavior of the joint, but delay the mobilization of catenary action. The thickness of the endplate should not be relatively thick in comparison to the diameter of the bolts, otherwise catenary action would not be mobilized or work effectively. Effective bending deformation of the endplate could help the formation and development of catenary action in the joints. The performance of flexural action in the joint would affect the formation of catenary action in the joint. Extra middle-row bolts set at the endplates and structural components set below the bottom beam flange should be used to enhance the robustness of joints. A special weld access hole between beam and endplate should be adopted to mitigate the chain damage potential of welds. It is suggested that the structural components of joints should be independent of each other to enhance the robustness of joints. Based on the component method, a formula calculating the stiffness coefficient of preloaded long bolts was proposed whose results matched well with the experimental results.

Perceived Organizational Performance Changes Resulting from Customer-Supplier Joint Action

  • Jung, Seung-Ho
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2000.10a
    • /
    • pp.197-200
    • /
    • 2000
  • The objective of this research is to identify perceived organizational performance changes resulting from customer-supplier partnership and their joint action. In addition, the perceived organizational performance change in this research is compared with objectively measured organizational performance improvement to see if there is any difference between them.

  • PDF

Joint Toxic Action of Acaricide Mixtures to the Field-Collected Strain of Tetranychus urticae(Arcarina: Tetranychidae) (야외계통의 점박이응애(Tetranychus urticae)에 대한 살비제 혼합의 연합독작용)

  • 김상수;김도익;이승찬
    • Korean journal of applied entomology
    • /
    • v.32 no.2
    • /
    • pp.176-183
    • /
    • 1993
  • These sutdies were conducted to investigate the joint toxic action of mixtures of several acaricides including amitraz, bifenthrin, propargite, fenbutatin dxide and bxide dicofol to the field-collected strian of Tetranychus urticae. The synergistic action of acaricidal mixtures was greatly varied with the kind of acaricide combinations and their mixture ratios. The combinations of amitraz with each of the tested acaricides were synergized at the given mixture ratios. The higher synergistic action in the each combination was observed at 2 : 8 ratio of amitraz and bifenthrin, 8 : 2 ratio of amitraz and fenbutatin oxide, 4 : 6 ratio of amitraz and propargite and 6 : 4 ratio of amitraz and dicofol.

  • PDF

Explicit Dynamic Coordination Reinforcement Learning Based on Utility

  • Si, Huaiwei;Tan, Guozhen;Yuan, Yifu;peng, Yanfei;Li, Jianping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.3
    • /
    • pp.792-812
    • /
    • 2022
  • Multi-agent systems often need to achieve the goal of learning more effectively for a task through coordination. Although the introduction of deep learning has addressed the state space problems, multi-agent learning remains infeasible because of the joint action spaces. Large-scale joint action spaces can be sparse according to implicit or explicit coordination structure, which can ensure reasonable coordination action through the coordination structure. In general, the multi-agent system is dynamic, which makes the relations among agents and the coordination structure are dynamic. Therefore, the explicit coordination structure can better represent the coordinative relationship among agents and achieve better coordination between agents. Inspired by the maximization of social group utility, we dynamically construct a factor graph as an explicit coordination structure to express the coordinative relationship according to the utility among agents and estimate the joint action values based on the local utility transfer among factor graphs. We present the application of such techniques in the scenario of multiple intelligent vehicle systems, where state space and action space are a problem and have too many interactions among agents. The results on the multiple intelligent vehicle systems demonstrate the efficiency and effectiveness of our proposed methods.

Effects of Task and Part on Tremor Characteristics in Patients with Essential Tremor (본태성 진전 환자의 진전특성에 대한 수행과제 및 부위의 영향)

  • Heo, J.H.;Kim, J.W.;Kwon, Y.R.;Eom, Gwang-Moon;Kwon, D.Y.;Lee, C.N.;Park, K.W.;Manto, M.
    • Journal of Biomedical Engineering Research
    • /
    • v.37 no.1
    • /
    • pp.15-20
    • /
    • 2016
  • Essential tremor is a neurological disorder with a tremor of the arms and hands. It is well known that essential tremor is characterized by the postural tremor and the action tremor. There has been no report on the quantitative difference in the characteristics of two tremor types. The purpose of this study was to investigate the possible difference in tremor characteristics of postural and action tremors. Seventeen patients with essential tremor ($68.9{\pm}7.9years$, 7 men, 10 women) participated in this study. Patients performed the tasks of postural maintenance (arms outstretched) and daily actions (spiral drawing). Three-axes (pitch, roll and yaw) gyro sensors were attached on index finger, back of hand and forearm, from which the segment and the joint angular velocities were calculated. Outcome measure was the tremor amplitude defined as the root-mean-square mean of the vector-sum angular velocity at segments and joints. Two-way ANOVA showed that task and joint had main factor on the tremor amplitude (p < 0.05). Post-hoc analysis revealed that tremor amplitude at the metacarpo-phalangeal joint was not affected by task (p > 0.05). However, tremor amplitude at the wrist joint differed among the tasks (p < 0.05), and it was greater in the action tasks than in postural task. Tremor was greater at finger segments than at hand and forearm and it increased in action tasks. The results of this study would be helpful for the understanding and task-specific treatments of the essential tremor.