
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 3, Mar. 2022                                     792 
Copyright ⓒ 2022 KSII 

 
http://doi.org/10.3837/tiis.2022.03.003                                                                                                                ISSN : 1976-7277 

Explicit Dynamic Coordination 
Reinforcement Learning Based on Utility 

 
Huaiwei Si1, Guozhen Tan1*, Yifu Yuan1, Yanfei peng1, Jianping Li1 

1 School of Computer Science and Technology, Dalian University of Technology, Dalian, 
LiaoNing,116024,People’s Republic of China 

[e-mail: sihuaiwei@mail.dlut.edu.cn] 
*Corresponding author: Guozhen Tan 

 
Received July 30, 2021; revised October 1, 2021; revised February 5, 2022; accepted February 16, 2022; 

published March 31, 2022 

 
Abstract 

 
Multi-agent systems often need to achieve the goal of learning more effectively for a task 
through coordination. Although the introduction of deep learning has addressed the state space 
problems, multi-agent learning remains infeasible because of the joint action spaces. Large-
scale joint action spaces can be sparse according to implicit or explicit coordination structure, 
which can ensure reasonable coordination action through the coordination structure. In general, 
the multi-agent system is dynamic, which makes the relations among agents and the 
coordination structure are dynamic. Therefore, the explicit coordination structure can better 
represent the coordinative relationship among agents and achieve better coordination between 
agents. Inspired by the maximization of social group utility, we dynamically construct a factor 
graph as an explicit coordination structure to express the coordinative relationship according 
to the utility among agents and estimate the joint action values based on the local utility 
transfer among factor graphs. We present the application of such techniques in the scenario of 
multiple intelligent vehicle systems, where state space and action space are a problem and 
have too many interactions among agents. The results on the multiple intelligent vehicle 
systems demonstrate the efficiency and effectiveness of our proposed methods. 
 
 
Keywords: Reinforcement Learning, Multi-agent System, Explicit Coordination Learning, 
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 1. Introduction 

Many real-world problems, such as multi-robot and urban traffic control systems, are 
naturally modeled as multi-agent reinforcement learning problems [1]. A multi-agent system 
consists of a group of interacting intelligent agents and has been widely used in a variety of 
domains from industries to militaries. Network packet delivery [2][3], urban traffic control [4], 
resource management [5], and collaborative decision support system [6] should naturally be 
modeled as coordination multi-agent systems [7].  

Although deep reinforcement learning (DRL) has been applied successfully to single-
agent learning [8], which solves the problem of high dimensional state space in reinforcement 
learning (RL) [9][10]. Unfortunately, in coordination multi-agent systems, tackling such 
problems with traditional RL or DRL is not straightforward because the coordination multi-
agent systems not only need to learn which actions to execute in an unknown environment but 
also to coordinate their actions in the working environment [11].  

Independent Q-learning (IQL) [12] is a popular method in which each agent independently 
learns its policy, treating other agents as part of the observations or environments. IQL avoids 
the scalability problems of centralized learning but it introduces a problem: ignoring the 
interactions among agents, and each agent’s learning is confounded by the learning and 
exploration of others. 

At the other extreme, some studies used a fully centralized training method to train 
coordination multi-agent systems [13]. In fully centralized training methods, a group of agents 
observes the global states and then models a coordination multi-agent system as a single meta-
agent. However, in meta-agent settings, the learning is intractable because of the exponential 
growth of the problem size with the increasing number of agents. Recently, many multi-agent 
reinforcement learning methods that use centralized training and distributed execution 
methods have been introduced, such as counterfactual multi-agent (COMA) [14], multi-agent 
actor-critic for mixed cooperative-competitive (MADDPG) [15], etc. These methods use a 
centralized value function network to represent the joint value function of all agents and use it 
to guide the policy network of each agent (as a baseline). However, if too many agents are in 
the multi-agent system, training a centralized network for all agents is difficult and may not 
converge.  

Between these two extremes, a value decomposition network (VND) [16] method is applied 
to learn a factored joint value function. The global value function is used to guide agents to 
learn decentralized local policy by decomposing the global joint value function into a linear 
combination of local value functions. The QMIX method improves the linear combination 
method of VDN and uses a hybrid network to approximate the nonlinear decomposition of 
each agent [17]. Because the QMIX does not know the relationship between agents, the global 
value function needs to be approximated by the nonlinear parameters, which leads to an 
implicit coordination approach. VDN and QMIX restrict the relation representation between 
agents while the local Q-values (utility of agent action) are estimated only from local 
observations. Those implicit coordination methods cannot clearly express the coordination 
relationship between agents (the learning process needs to consider agents that do not have a 
cooperative relationship), which affects the coordination efficiency, and may not be able to 
obtain a coordination policy. Moreover, to obtain the optimal policy, agents not only need to 
express the coordination relationship clearly but also need to obtain the coordination utility. 

In this paper, we combine factor graphs with DRL to propose an explicit reinforcement 
learning method for the coordination learning of a multi-agent system. The factor graph not 
only expresses the coordination relationship but also represents the joint utility between agents. 
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In our method, the coordination relationship is expressed explicitly by the factor graph. We 
use the local value function to obtain the global value function. The local value function is 
observed by each agent, and the global value function integration is carried out according to 
the message passing algorithm. For the construction of the factor graph [18][19], we do not 
want to use rules and pre-defined methods, we want to find a way to adjust our coordination 
structure dynamically according to the state transition. Inspired by the group social utility 
theory [20], a coordination multi-agent system can be decomposed and combined according 
to the relationship between agents dynamically, whose relationship is a type of interactive 
utility (the payoff of coordination). Our coordination structure differs from previous methods, 
which is a dynamic construction method based on utility. 

The second section introduces the related work of multi-agent reinforcement learning. The 
third section describes the multi-agent MDP model, factor graph model, and Max-sum 
algorithm. The fourth section describes the method in detail. In the fifth section, we verify our 
method in the multi intelligent vehicle environment and compare it with other methods. The 
sixth section summarizes this paper and the possible future research directions. 

2. Related Work 
Multi-agent RL has a rich and long history [21] and one of the most commonly used methods 
is independent Q-learning (IQL) [12][22][23]. The IQL method takes each agent in a multi-
agent system as an independent entity to learn completely independent action-value functions. 
This method can be combined with deep learning and applied to other high-dimensional agent 
systems. However, this kind of independent learning is difficult to converge and its stability 
cannot be guaranteed because it does not consider the coordination relationship. Although the 
studies [24][25]solved part of the stability problem by extending the state space, the 
convergence is still not guaranteed. 

Other studies regard multi-agent as a single meta-agent [26], where the action is a joint 
action for all agents and the reward is the total reward for all agents. The immediate difficulty 
with this approach is that the action space is quite large: if there are n  agents, each of them 
can take m actions, then the action space is nm . On this basis, some studies have adopted 
centralized training distributed execution mechanisms, but most of these methods use actor-
critic architecture [27]. Gupta et al., “proposed to train agents with one actor-critic and only 
use an actor to make decisions when executing [28]. MADDPG [15] also estimates other 
agents policies in actor-critic architecture for training. COMA [14] method uses centralized 
critic to train decentralized actors and uses the counterfactual ideal to solve the credit 
allocation problem. Although that method reduces exponential complexity, it is still difficult 
to train and converge for the multi-agent centralized critic. 

Recently, many studies have decomposed the centralized global value function into the 
combination of local functions, such as the value decomposition network (VDN) proposed by 
Sunehang et al., “[16]. VDN method adds all value functions of agents linearly to guide the 
training of agents and does not require additional information from other agents. Rashid et al., 
use a QMIX network to decompose and sum up all agent value functions based on VDN [17]. 
They further employed a nonlinear combination of each agent value function. However, this 
improved method requires a monotonic increasing constraint, which is guaranteed by the 
maximum operation of each agent’s value function. Moreover, it is an implicit expression of 
the coordinated relationship that limits the relationship representation between agents and 
affects the accuracy of the agent value function. It does not have the representational capacity 
to distinguish the values of coordinated and uncoordinated actions, an optimal policy cannot 
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be learned. 
Thus, it is very important to explicitly represent the coordinated relationship and value 

function. Guestrin et al., “[29] and Kok et al., “[30] used a coordination graph to represent the 
dependence among agents. According to this dependence, the global value function is 
decomposed into the sum of local value functions. This method uses the coordination graph in 
large savings in the state-action representation and combines it with RL to obtain the 
coordination policy. However, the coordination graph method based on the local relationship 
decomposition needs to define the dependency relationship among agents in advance, which 
is inflexible. Although the paper [31] proposed a method to decompose the value function of 
a dynamic coordination graph being studied, the dynamic decomposition is based only on the 
relative position relationship or in a specific order to construct the dynamic coordination graph, 
while the internal utility and graph modeling method based on predefined rules are not 
considered. The real coordination is determined by the utilities of agents and automatically 
adjusts the coordination structure according to status. 

3. Preliminaries 

3.1 Markov Decision Progress and Deep Reinforcement Learning 
Markov decision processes (MDP) [33] is an important stochastic decision model and are 
frequently used in sequential decision-making. The MDP is defined by four-tuples { , , , }S A r P , 
where S  is a discrete or continuous state space, A  is a discrete or continuous action space, 
and :r S A R× →  is a reward function. P  is a transition probability function. 

0
 t

T tt
R E r

∞
γ

=
 =   ∑                                                             (1) 

TR  is the total expected reward, where E is a mathematic expectation, [0,1)γ ∈  is the discount 
factor, and tr  is an immediate reward for performing an action in a state at time t  produced 
by the reward function r .Reinforcement learning optimizes the object of the value function 
or policy to realize the control optimization. Assume s S∈  and a A∈  at time t . π  is a policy 
at time t , which is a mapping : S Aπ → . The decision objective can be maximized with any 
initial state. The state-action value (Q-value) function is defined as follows. 
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For any policy π , according to transition probability ( ), ,p s a s′ , the state action value function 

(3) satisfy the Bellman equation, and the optimal policy π∗  is defined (4): 

( ) ( ) ( )
* *
( , ) , , , , max ,a A

s S

Q s a p s a s r s a s Q s aπ πγ ′∈
′∈

 = ′ ′ + ′ ′  ∑   (3) 

**( ) arg max ( , )a As Q s aππ ∈=                                              (4) 
When the state transition probability ( , , )p s a s′ is unknown, a common solution is Q-

learning, which is a popular temporal difference learning method. Q-learning estimates each 
state-action  ( , )Q s a  value function (Q-value) for assignment. It is based on the state and action 
for learning. Q-learning determines an expected discount on future rewards. The state s  takes 
action a  at time t  and r  is the reward value of the state s  at time t . They are all observed, 
and s′  is the next state, a′  is the next action. The synchronization of the Q-values is updated 
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as shown in (5): 
( )( , ) : ( , ) ( , ) max , ( , )aQ s a Q s a r s a Q s a Q s aα γ ′ = + + ′ ′ −   (5) 

where (0,1)α ∈  is a learning rate. Q-learning converges to an optimal *( , )Q s a  value if all state 
action pairs have been detected with a reasonable exploration strategy.  

Q-learning does not apply to high-dimensional state environments. In Deep Q-learning 
Network (DQN) [34], the Q-value function can be approximated by a neural network. The Q-
value function is represented by  ( ,  ; )Q s a θ  and parameterized by θ . The DQN has two 
mechanisms for improving learning performance: experience replay and the target network 
[35]. The state correlations are weakened by uniformly sampling from the replay memory. The 
temporal difference loss function can be written as 2( ( , : ))y Q s a θ− , where ( ), ;y Q s a rθ′ ′ ′= +  and 

( )arg max ,a Aa Q s a θ′ ′ ′
∈= ∣ . θ represents the current Q function parameter, and θ ′  represents 

the Q function parameter before the n  times, which is updated to θ  with a fixed frequency. 
DQN can use the high-dimensional information as the Q-learning inputs; for example, using 
pictures as the inputs. 

3.2 Multi-agent MDP 
In multi-agent systems, the single agent MDP should be extended to the multi-agent system. 
A tuples { }

1
, , , , ,S

ni
i

n A T R γ
=

< > , n  is the number of agents, S is the global states, and iA  is a set 

of actions which the agent in multi-agent system. : [0,1]S ST A× × →  is the transition function 
that describes the multi-agent system from S  to S′ . The reward function is R . Each agent i  
has a policy iπ  conditioned on its observations Ss ′∈ , and obtains the reward tr  at step t . A 

joint value function ( ) [ | , ], tt tttQ s E G sπ =a a , where 
0

t
t t

t

G rγ
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=

=∑  and the ta  is the joint action and 

tr  is reward at time step t .  

3.3 Factor Graph and Max-Sum Algorithm 
The factor graph [36] can represent the relationship between agents in the form of local joint 
utility, and an explicit representation of agent relationship. The factor graph is usually divided 
into function and variable nodes, as shown in Fig. 1(a). The definition of specific factor graph 
is as follows: a global valued function F , which is dependent on a set of variable-nodes 

1 2, , , nx x x…  and a set of function-nodes , , , , , ,, , , , ( , , , ) {1,2, , }i j i j k i j k lf f f i j k l n… ∈ … . Each 

function-nodes is a factor, which is a function of a subset mx  of the variables. The factor graph 
follows the representation of the bipartite graph. Variable nodes are only connected with 
function nodes, and function nodes are only connected with variable nodes. A factor graph can 
be constructed in two ways: one is based on interaction and the other is based on utility value. 
We construct a factor graph according to the utility construction rule. Each agent  i ( ( ))A i
maintains the joint utility function and its action variables. When an agent interacts with 
another agent, the current agent takes its action as the variable of the utility function, as shown 
in Fig. 1 (a). 

With the representation of the agent relationship in the factor graph, we use the Max-Sum 
algorithm based on social utility to solve the global maximum utility value. The Max-Sum 
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algorithm [37] is a set of message propagation algorithms used to solve the social benefit 
problem in a group of interactive individuals. The Max-Sum algorithm iteratively calculates 
the value of the message passing between the variable and function nodes until the value 
reaches stability or the iterative calculation reaches a certain round. To facilitate the 
description of this message propagation, we use a simplified factor graph (Fig. 1(b)) to 
illustrate the message passing process, the 1 2 3, ,x x x  represents the variable nodes, and 1 2,f f   
represents the function nodes. The information calculation rules are as follows: 

(a) Information transfer rules from variable node i  to function node j  

( ) ( )\ii j i k M j k i iq x r x→ ∈ →=∑                                          (6) 

where \iM j  is the index of all function nodes connected to the current variable, 
except for itself. 

(b) The information transfer rules from function node j to variable node i  

( ) ( ) ( )\ \maxx j jj i i i j j k N i k j kxr x f q x→ ∈ →
 = +  

∑       (7) 

where \jN i  represents the index of all variable nodes connected to function node j , except 
for itself. The message sent and received by the variable nodes in the factor graph is the 
maximum utility of the population when these variables are assigned different values. At any 
time during the propagation of these messages, the  thi  agent can determine which value it 
should adopt to maximize the sum of all agents utility. Each variable node calculates the local 
utility function value ( )i iz x . Through ( )arg max

ix i iz x  operation to find the value of the 
variable-node with the maximum global utility. Each variable node calculates the local utility 
function value ( )i iz x ;  

( ) ( )
i

i i j i i
j M

z x r x→
∈

= ∑                                                 (8) 

Through ( )arg max
ix i iz x  operation to find the value of the variable-node with the maximum 

global utility.  

 
Fig. 1. Factor graph and Max-sum algorithm 

3.4 Intelligent Vehicle RL and MDP Model 
A behavior planning decision, such as a car-following or overtaking decision, of an intelligent 
vehicle can be modelled as MDP , ,S A R< > . Here, vehicle 0 is used to explain the state of 
each intelligent vehicle, as illustrated in Fig. 2. The state includes all of the factors affecting 
the decision making of the intelligent vehicles. The ten dimensional states entailed in 
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( )0, , ,i il v v d  ( )1,2,3,4i = are shown in Fig. 2. 
Here, l  is the lane where the vehicle is located. Subsequently, 1l =  means that the vehicle 

is driving on the driving lane, and 2l =   means that the vehicle is driving on the overtaking 
lane. 
(1) 0v  is the speed of the vehicle. 
(2) 1v  is the speed of the leading vehicle that is closest to the vehicle on the driving lane. 
(3) 2v  is the speed of the lagging vehicle that is closest to the vehicle on the driving lane. 
(4) 3v  is the speed of the leading vehicle that is closest to the vehicle on the overtaking lane. 
(5) 4v  is the speed of the lagging vehicle that is closest to the vehicle on the overtaking lane. 
(6) 1d is the distance between the leading vehicle and the vehicle on the driving lane that is 

closest to the vehicle. 
(7) 2d  is the distance between the lagging vehicle and the vehicle on the driving lane that is 

closest to the vehicle. 
(8) 3d  is the distance between the leading vehicle and the vehicle on the overtaking lane that 

is closest to the vehicle. 
(9) 4d  is the distance between the lagging vehicle and the vehicle on the overtaking lane that 

is closest to the vehicle. 
The abovementioned state definition regards the position and speed information of 

neighboring vehicles as the two dimensions of the state. In fact, the position and speed of the 
neighboring vehicle can be combined with the remaining reaction time (RRT) to reduce the 
redundancy of information, thereby further reducing the dimension of the state. As such, the 
dimension of the autonomous vehicle’s state is reduced from ten to five dimensions. After the 
dimensionality reduction process, the state of the vehicle can be expressed as ( ), il t ( )1,2,3,4i = . 
(1) 

11 1 1 0: ( ) /st t d d v= −  indicates the remaining reaction time between the vehicle and the leading 
vehicle on the driving lane. 

(2) 
22 2 2 2: ( ) /st t d d v= −  indicates the remaining reaction time between the vehicle and the 

lagging vehicle on the driving lane. 
(3) 

33 3 3 0: ( ) /st t d d v= −  indicates the remaining reaction time between the vehicle and the 
leading vehicle on the overtaking lane. 

(4) 
44 4 4 4: ( ) /st t d d v= −  indicates the remaining reaction time between the vehicle and the 

lagging vehicle on the overtaking lane. 
In the formulas, 

isd  means the shortest safe distance between two vehicles when the 
current vehicle is driving at an acceleration of 26 /m s− , and the following vehicle is driving at 
an acceleration of 24 /m s−  . For example, the minimum safe distance between a vehicle and 
the leading vehicle on the driving lane is 2 2

2 0 0 2 2/ (2 * ) / (2 * ) 10sd v a v a= − +  , where 2
0 6 /a m s= − , 

2
1 4 /a m s= − , and 10 is the predetermined distance that considers the reaction time of the driver 

of the leading vehicle and the length of the vehicle. As this study focuses on high-level driving 
decisions during vehicle driving, the action set mainly includes the following two actions: 

(1) Driving on the driving lane: The vehicle follows the leading vehicle. For the planned 
speed pv  on the driving lane, the speed limit on this driving lane is 35 /dv m s= . 
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(2) Driving on the overtaking lane: The vehicle follows the leading vehicle. For the 
planned speed pv  on the overtaking lane, the speed limit on this overtaking lane is 

40 /ov m s= . 
The driving planned speed pv  means that the vehicle follows the leading vehicle at the 

planned speed pv . When the planned speed pv  is greater than the speed limit ( dv  or 0v ) of the 
lane, the vehicle follows the leading vehicle at a certain speed ( dv  or 0v ) where it is driving 
on. The planned speed of a vehicle can be calculated using various car-following models [37] 
[38] based on the relative position and relative speed of the vehicle in front. We use the 
heuristic method to implement the car-following model and calculate the planned speed pv  as 
follows: 1 1 0 0 1 1 0: (( 10 ) & ( ) 3.6 / ) ( 0.25( ) 1.5( )) /p f p fv d d m v v km h v v d d v v km h− > − > ⇒ = + − + −  

 

 
Fig. 2. The state of vehicle 

 
where 2

0 1( / ( 2 ) 5)fd v a m= − +  is the vehicle following distance, 2=-6m/sa  is the preset braking 
acceleration of vehicle deceleration, and 5m is the length of the vehicle. In this heuristic 
method, if the distance between vehicles is large 1(( ) 10 )fd d m− > , and the relative speed 
between vehicles is relatively large 1 0(( ) 3.6 / )v v km h− >  at the same time, then the lagging 
vehicle will accelerate to reduce the distance from the leading vehicle. 

The last important element of MDP is the reward function, which is an index used to 
evaluate the learning performance of an agent. In autonomous driving, safety is the ultimate 
goal and the most important criterion for evaluating the decision making of an agent. By 
considering the safety of driving, the definition of the reward function is given by  

                                      1 2 1 2
afe

3 4 3 4

40
min( , ) 1 3 3
min( , ) 2 3 3

5

s

if collision
t t if l and d and d

r
t t if l and d and d

else

−
 = > >=  = > >
 −

                     (9) 

peed =
0

p t p t
s

v v if v v
r

else
− >




                                                   (10) 

where tv  is the task speed of the last decision. When the vehicle runs on the driving lane, and 
the distance between the vehicles (leading vehicle and lagging vehicle) is not too close 

1 2( , 3m)d d > , the reward value is the minimum of the remaining reaction time on the driving 
lane 1 2(min( , ))t t . Thus, the greater are the values of 1t  and 2t , the greater is the safety reward of 
the vehicle on the driving lane. When the vehicle runs on the overtaking lane, and the distance 
between the vehicles (leading vehicle and lagging vehicle) is not too close 3 4( , 3m)d d > , the 
reward value is the minimum of the remaining reaction time on the overtaking lane. Given

3 4(min( , ))t t , the larger are the values of 3t and 4t , the greater is the reward to be obtained by 
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the vehicle on the overtaking lane. If the distance between the vehicles and any vehicle in the 
same lane is less than 3m, then the vehicle will be apprehended; that is, the reward value is −5. 

In this paper, the action we designed in the autonomous driving simulation is a discrete 
driving policy (behavior planning), not continuous action, for example, the direction and speed. 
But these continuous actions belong to the control level, and our actions only involve the 
planning level. These driving policies, such as overtaking and lane changing, are designed as 
discrete actions. According to [41] and [42], the tasks of an intelligent vehicle can be divided 
into three categories, namely, perception, planning, and control. Furthermore, according to [43] 
and [44], the planning can be divided into three main levels of route planning, behavior 
planning, and motion planning. Behavior planning describes the tactical behavior of the 
vehicle at maneuver layer. The tactical decisions in such scenarios include lane keeping or 
lane changing to the left or to the right. Many other tactical behavior, such as lane merging 
policy on intersections or ramps. This paper mainly investigates the lane keeping and lane 
changing on highway. 

4. Method 
The coordination structure has been applied to multi-agent systems to coordinate actions 
among agents. According to the coordination structure, the global value function can 
decompose into a combination of local value functions. We use an explicit coordination 
structure to decompose the value function of each agent and the local joint utility value 
function. In this paper, the explicit coordination structure is the factor graph, which is a 
representative structure of the joint utility. When an agent is added to the factor graph, each 
agent has its utility, and at the same time, it will produce local joint utility with the coordinative 
agent. Specifically, if two agents have interactive utility, then the action sets of the two agents 
are variable nodes; these variable pairs are regarded as the set E  of an edge in the factor graph 
and the local joint utility of the two agents in the function node. The global value function is 
(11), which maximizes the global value function composed of each value function and joint 
utility value function to achieve the purpose of coordination learning. 

( ) ( )
1 ( , )

( , ) : , ,
n

i i i ij ij ij
i i j E

Q s a Q s a Q s a
= ∈

= +∑ ∑                         (11) 

In formula (11), iQ  represents the value function of each agent in the factor graph and ijQ  
represents the local joint utility function (payoff function) of two agents with common factors. 
In previous works, the coordination structure is pre-defined or determined by a simple location 
relationship, which are then used to message the propagation algorithm to compute global 
utilities. In this paper, the coordination structure is represented by a factor graph and need not 
pre-defined or simply construct according to the relative position. We use the utility between 
agents to construct a factor graph to represent the relationship between agents dynamically. 
When the joint utility value of agent  1A  and 2 A differs from the sum of independent decisions, 
it is necessary to establish a coordination relationship in utility theory. A common factor node 
is established, and the value function of each agent is a function node. 
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Fig. 3. Construction of dynamic coordination structure based on utility 

 
The basic principle of the dynamic construction factor graph is as follows: According to 

the difference utility between two agents in a coordination and non-coordination state, we 
judge whether the two agents construct in the factor graph. We use the significance test method 
to test the difference between the utility of the agent in the coordinative and the non-
coordinative state. A significant difference is observed, the joint action function of the two 
agents is taken as the common factor of the factor graph. To judge whether an independent 
agent needs to coordinate with a set of agents which are already in the factor graph, two kinds 
of utility need to be compared: one is the utility generated by the agent independently from the 
agents which are in the factor graph and the other is the utility generated by the independent 
agent added to the factor graph. To simply the calculation further, we can use a utility measure 
to check the joint utility of two agents, one is independent and the other is already in the factor 
graph (coordination group). We check the joint utility between each independent agent and 
each agent that is the coordination group. If the coordination utility is significant, the 
coordination structure should include the independent agent. This method only checks each 
couple (local) agent of the coordination utility with statistical significance instead of 
computing every agent coordination utility using the coordination structure. 

The local utility measure can use any multi-agent reinforcement learning methods. The 
only requirement is that the joint utility of two agents can be calculated. The method we use 
is a type of joint training method that takes multi-agent as a single meta-agent. Although the 
single meta-agent method increases exponentially with the number of agents, the amount of 
computations is acceptable when the number of agents is small. We use a joint utility network 
to measure the two agents joint utility, which is similar rules. The joint utility network that can 
pre-train by deep reinforcement learning is used to decide on the agent and whether to add to 
the factor graph and coordination learning. 
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Fig. 4. Utility dependence coordination learning 

 
If an agent is independent of other agents, the agent uses the independent network to learn 

its strategy and select action. However, if the agent has an effect on global utility, then the 
agent should enter the coordination structure for coordination learning. Sometimes, the effect 
should be ignored when the agent only has a greater effect on global utility accidentally, which 
is also called non-significant in statistics. We used the statistics of multi-agent training samples. 
These samples are the agent independent learning samples tQ , t i jQ Q Q= + , where jQ  is the 
utility of independent agent jA , we check whether to add the coordination group, iA  is the 
agent already in the coordination group, and utility iQ  is predicted by the independent value 
network. The joint actions of learning samples JQ  is produced by the utility network (single 
meta agent learning method), which is the agent iA  and the agent jA  states as the utility 
network inputs. In these samples, we used uniform sampling in memories to sampling N  
samples. Fig. 3 shows that for each couple iA  and jA , we independently compute the total 

utility of tQ  on iA  and jA  compute the mean tQ . These statistics are only computed by the 
independent networks, and the agents only used the memories to estimate the action value 
instead of executing the actions. We also need to compute the variances ˆ

tQ . Meanwhile, the 
utility network computes the mean utility JQ  and variances ˆ

JQ of the two agents joint action 
for N  samples in the same period. In our method, we use the t−test to detect significant 
differences between the two utility values. The t-test definition is: 

1 2
2 2
1 2 1 2

2 2 1 22

X Xt
x x n n

n n n n

−
=

+ +
×

+ − ×
∑ ∑

                                           (12) 

In our method, we use the tQ and JQ  to compute the t : 
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ˆ ˆ(2 / )( 1) ( 1) / (2 2)
t J

t J

Q Q
t

N N Q N Q N

−
=

− + − −
                (13) 

In the t-test, the (2 2)N −  refers to the freedom. We assume that the significance 
probability 0.05p = , the p  to prove when the agent iA  joins the group the utility value 
changing is significant. As with other statistical methods, we use an additional statistical effect 
size measurement d  to determine whether the signature is statistically. The d definition is as 
follows: 

max min

t JQ Q
d

r r
−

=
−

                                                            (14) 

The d  use the max reward ( maxr ) and ( minr ), max joint utility value, and the mean utility value 
to prove the statistical data are not only significant but also sufficiently enough. If the p  is 
significantly and d  is sufficiently large ( ) ( ),( t testtable N t testtable Np P d D− −< > , ( )t testtable NP− and 

( )t testtable ND −  are all derived from the t-bound table and are hypothesis test constant), which 

proves that when the agent iA  joint the coordination group is beneficial. If the  testtable(N)tp P−>  

proves the iA in coordination group does not have more utility, and if  testtable(N)td D −<  proves 
that it is occasional, it can obtain more utility. If the agent joins the coordination group, it 
should coordinate learning with other agents in the group. In this paper, we use the factor graph 
to represent the coordination group. Pseudocode is shown in algorithm 1. When we obtain the 
factor graph, we use coordination learning to training the agents.  

Because our computation is based on the samples in memory, an agent that is independent 
of the coordination group can compute in a completely and synchronization manner with the 
coordination group to determine whether it needs to join the coordination group. When an 
agent joins the coordination group, a factor node joins in the graph and an edge also joins in 
the graph. In the factor graph, we integrate all local utility to obtain the global utility using a 
message-passing algorithm combined with reinforcement learning to run coordination learning. 
We construct a factor graph based on utility and decompose the global value function 
according to formula (11). The Max-Sum algorithm is used to solve formula (15), which 
obtains maximum joint action *a and the maximum global utility(as a baseline) to guide each 
agent leaning. Fig. 4 describes the whole process of the algorithm, and we called it the utility 
dependence coordination learning (UDCL) 

( ) ( )*

1 ( , )

arg , ,
n

i i i ij ij ij
i i j E

a Q s a Q s a
= ∈

  = + 
  
∑ ∑                        (15) 

Then use actions *a  to guide each agent learning in formula (16), as follows and 
pseudocode is shown in algorithm 2. 

( )*( , ) : ( , ) ( , ) , ( , )i i i iQ s a Q s a R s a Q s a Q s aα γ = + + ′ − 
     (16) 

 
 

Algorithm 1 Utility dependence algorithm 
Initialise Coordination Group (CG) CG = ∅ , Independent Group (IG) IG = {Numbs agents} 
for t=1 to T0 do 

for each training episode e  do 
Random select two agents 1A  and 2A  
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Utility network( 1A  , 2A ) 
end for 

end for 
save the utility network //check utility network 
select one agent A 
for t=1 to T1 do 

for each training episode e do 
      single − meta(A) 
end for 

end for 
save the single-meta network 
while terminalts ≠  and t T<  do 
     t=t+1 
     for t=1 to Ttotal do 
          Random select two agents from group IG ,AI,AC 

CA CG→  
I C

I t tQ Q Q= +  //use the independent network 

JQ = Utility network ( ),I C
t tA A  

end for 
if significance test(QI,QJ)==true 

IA CG→   
if significance test ( ), !=trueI JQ Q   
The A not into CG 

end while 
 

 
Algorithm 2 Utility Dependence Coordination Learning 
Initialise network Qi for each agent i 
for each training episode e do 
      for every agent do 
          build factor graph // Algorithm 1 
          Decompose the global value function according to formula 9 
          while if ( )ij iU a  small change or 15 loops do 
          for the agent i of all neighbors Γ( )j i∈  do 

            send j  message ( ) ( ) ( ) ( )Max ,

( )/

U a Q a Q a a U a

i j

ij i i i ij i j ki i

k

 
 
 
 = + + 
 
 
  

∈Γ
∑  

             ( ) ( ) ( )maxg a Q a U ai i i ji i

j

 
 
  = + 
 
 
  ∈Γ

∑ and ( )( )arg*a g ai=  

             end for 
      end while 

update the according to formula 14 
  end for 
end for  
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5. Experimental Evaluation 
With the development of artificial intelligence (AI) and more advanced hardware technology, 
traffic systems have been transforming from human to automobile driving. Intelligent vehicles 
as wheeled robots are applied in intelligent transportation systems (ITS) [39]. The intelligent 
vehicles will perhaps become the first widely used agents in our lifetimes. In recent years, 
intelligent vehicles have been launched in many research institutions, and the number of 
intelligent vehicles on the road will increase in the future. Therefore, more advanced 
coordinated decision-making is required for driving policies [40]. 
 

 
Fig. 5. Traffic flow figure of freeways 

 

We present an MDP model of multi-intelligent vehicle autonomous driving decisions. 
The MDP model is solved according to the coordination reinforcement learning method 
through a simulation experiment that evaluates the intelligent vehicle coordination. In this 
paper, we simulate highway scenarios in Fig. 5. Environmental information perceived by each 
intelligent vehicle is shown in Fig. 2. The Section 3 introduces the MDP model of intelligent 
vehicles. The highway task speed is randomly generated in the [25,40]m/s and the max 
velocity is 40m/s. At the same time, we simulate the high-level decision-making actions of 
intelligent vehicles like humans, which are vehicle following and lane changing. When the 
vehicle decides to overtake, it will change lanes smoothly in advanced design. When it decides 
to follow, it needs to compute a planning velocity planv , which is a vehicle following speed 
and the calculation method as shown in paper [37]. The specific experimental parameters are 
defined in Table 1. 

 

Table 1. Training time and movement parameters of 5-11 vehicles 
vehicles method Lane 

Change Speed Min. 
Distance Times(hour) 

5  
vehicles 

UDCL 12.3 35.1 97.8 4 
Independent 51.8 32.5 30.2 2 

QMIX 17.6 33.5 88.9 8 
COMA 32.5 29.7 105.6 13 
IDCG 33.2 34.1 80.78 23 

8  
vehicles 

UDCL 17.4 33.8 100.2 6 
Independent 60.7 30.3 34.7 3 

QMIX 20.2 34.4 90.2 11 
COMA 22.8 22.8 110.1 22 
IDCG 38.6 38.6 79.8 43 

11  
vehicles 

UDCL 21.3 21.3 103.2 9 
Independent 66.5 28.5 41.2 6 

QMIX 25.9 25.9 90.3 18 
COMA 20.1 20.1 78.9 29 
IDCG 17.9 17.9 87.8 50 
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According to the method of the fourth part, we first train a joint utility network to judge 

the coordination relationship between vehicles, and then build the factor graph according to 
the relationship. Finally, the coordination learning method (UDCL) is used to train multi-
intelligent vehicles system. We verify that dynamic local coordination utility is effective 
compared to the fixed coordination structure and independent learning methods. We choose 
two vehicles to learn jointly and independently in a multi-vehicle environment. Fig. 6 shows 
the learning results of three cases, in which the horizontal axis represents each episode and the 
vertical axis represents the average cumulative reward value of each episode. Dynamic joint 
training represents two vehicles of cumulative reward in our dynamic utility method. Fixed 
joint training represents two vehicles of cumulative reward in a predefined method and 
independent training represents the reward convergence of independent learning of two 
vehicles. A comparison of the three reward curves shows that the dynamic utility method of 
joint learning is more effective. 

 
Fig. 6. Three local coordinative construction methods 

 
In Fig. 7, we analyze the situation of five intelligent vehicles in the simulated 

environment. The five vehicles on the highway use our method (UDCL), centralized training 
coordination method (COMA), implicit coordination learning (QMIX), artificial fixed 
coordination structure learning method (I-DCG), and independent learning method. Fig. 7(a) 
shows the average cumulative reward curves in the training and five vehicles were used in the 
simulation environment. In the training, every episode has 400 decision-making simulations. 
We compare the average cumulative reward for different methods. In our UDCL method, the 
significance parameter is P = 0.05 and the effect size is D = 0.01. Fig. 7(a) shows that the 
coordination method (UDCL, I-DCG, QMIX, and COMA) converges faster than the 
independent method and more stable. We find that an explicit coordinated method (UDCL, I-
DCG) obtains more cumulative reward than an implicit collaborative method (QMIX). At the 
same time, our UDCL method is significantly better than other coordination learning methods 
(I-DCG) in learning convergence speed and overall reward. Although the I-DCG method also 
considers the explicit coordinative structure because the method cooperates with all the 
surrounding intelligent vehicles according to the identification, this method will coordinate 
with the vehicle which unnecessarily coordinated, such that reduces the final global 
coordination.  
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(a) average reward on five methods
(b) the number of lane change on 

five methods  

(c) the minimum distance on five 
methods(m)

(d) average velocity on five 
methods(m/s)  

(e) stability on five methods  
Fig. 7. The average reward, number of lane change, minimum distance, average velocity and 

stability of intelligent vehicles on the five learning methods 
 

When we compare the micro-movement indicators, we find that the policies learned by 
coordinative learning are safer and more conservative than the independent method. The 
independent method will lead to the learned policies being very radical, resulting in frequent 
lane changing (Fig. 7(b)), and keeping a relatively dangerous distance from other vehicles 
(Fig. 7(c)). A large driving velocity can be obtained when considering another vehicle in 
training (Fig. 7(d)). The coordination method can not only obtain higher driving velocity, the 
velocity stability is also better because of learning a better driving policy (Fig. 7(e)). Compared 
with other coordination methods, our UDCL coordination method maintains a relatively stable 
minimum distance between vehicles and fewer lane changing times, while the average velocity 
is guaranteed and stable in a small interval. 
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We increase the number of experimental vehicles from five to eight and eleven (in Fig. 
8) and find that the implicit coordination learning method converges more slowly in the 
learning process. The fully centralized COMA method is also unstable when it trains in the 
more vehicles environment. At the same time, the implicit coordination learning method 
converges much more slowly in the learning process and the fully centralized COMA method 
is unstable in an environment with more vehicles. However, explicit collaboration is always 
better than QMIX and COMA, which highlights the necessity of explicit coordination. 
Although I-DCG also maintains a high and stable reward than QMIX and COMA, I-DCG uses 
the relative position to learn driving policy, the actual utility between vehicles is not considered, 
which creates more unnecessary coordination. As a result, the convergence of the cumulative 
reward becomes slower and better coordination of the policy is not obtained.  

 

 
Fig. 8. Comparison of the rewards of different learning methods in the 

case of eight vehicles and eleven vehicles 
 

Table 1 shows the training times and movement parameters of 5-11 vehicles for the five 
algorithms. In the training, we increase the number of vehicles from five to eleven. The 
training time of each method and the changes in the movement parameters are shown in Table 
1. The training time for our UDCL method is less than the other implicit coordination learning 
methods (QMIX), with greater rewards. Because our coordination learning requires vehicles 
to test the utility among vehicles, more time is required than independent learning. The training 
time is shorter than all other methods because of the independent learning method does not 
need to calculate the global utility. With the increase in the number of vehicles, our method 
still maintains better stability in training time, cumulative reward, and various moving, 
because we use the residual utility between vehicles as the basis for coordination learning. 

Compared with implicit coordination learning, our method clearly defines the 
coordinative relationships of each vehicle, which can reason the global joint utility. We use 
the joint utility as a baseline to guide coordination learning. At the same time, compared with 
the explicit coordination method that builds the coordination relation among vehicles in 
human-defined rules or order, too much unnecessary coordination will occur, which affects 
efficiency and effectiveness. 
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6. Conclusions 
In this work, we developed a set of techniques to build the factor graph in multi-agent systems. 
The factor graph explicitly represents the dependence between agents combined with deep 
reinforcement learning to train multi-agent systems. However, most efforts focus on the 
combination of fixed structures, implicit coordination structure, full centralized training, or 
independent training. The construction of coordination structure affects the efficiency of 
coordinative computing in the process of coordination. When an agent cooperates with other 
agents, it is measured by their joint utility, which proves that the agent should cooperate with 
other agents in the coordination structure. In this paper, inspired by the social utility 
mechanism, we use the factor graph as the representation structure of the explicit cooperative 
relationship between agents. We used a joint utility measurement method to measure the joint 
utility of independent agents within the coordination group and to determine whether 
independent agents should join the coordination group in combination with the significance 
test. Our approach focuses on using the dependency among agents to build an explicit 
coordination structure. 

We believe that we have achieved promising results with a lower computation cost. As 
shown in Table 1, when the training time is less, we consider the computational cost is less.  
Although our approach requires training the utility network to check two agents utilities, we 
managed to use DRL in a complex domain using the factor graph that mitigates the problem 
of large action-space. This approach can be adapted for other cooperative multi-agent systems, 
where the factor graph is predefined. Our approach can be used to build the factor graph 
dynamically. 

In this paper, simulation experiments are carried out on cooperative learning of multi-
agent vehicles. The action of our intelligent vehicle is discrete. In future work, we intend to 
improve our method in two ways. First, we will study how we can carry out cooperative 
reinforcement learning of multi-agents in continuous action space. We also plan to explore 
further the relationship between agents by not only building the coordinative relationship 
between agents dynamically but also considering this relationship when making decisions. 
Second, we aim to eliminate the need to predicting the future state-space for each agent in the 
coordination learning progress. Furthermore, instead of using the free-model RL as the agent 
learning method, we aim to consider the model-based RL method to agent learning progress 
that accelerates learning. 
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