• 제목/요약/키워드: Job scheduling

검색결과 426건 처리시간 0.023초

동적 Job Shop 일정계획을 위한 유전 알고리즘 (A Genetic Algorithm for Dynamic Job Shop Scheduling)

  • 박병주;최형림;김현수;이상완
    • 한국경영과학회지
    • /
    • 제27권2호
    • /
    • pp.97-109
    • /
    • 2002
  • Manufacturing environments in the real world are subject to many sources of change and uncertainty, such as new job releases, job cancellations, a chance in the processing time or start time of some operation. Thus, the realistic scheduling method should Properly reflect these dynamic environment. Based on the release times of jobs, JSSP (Job Shoe Scheduling Problem) can be classified as static and dynamic scheduling problem. In this research, we mainly consider the dynamic JSSP with continually arriving jobs. The goal of this research is to develop an efficient scheduling method based on GA (Genetic Algorithm) to address dynamic JSSP. we designed scheduling method based on SGA (Sing1e Genetic Algorithm) and PGA (Parallel Genetic Algorithm) The scheduling method based on GA is extended to address dynamic JSSP. Then, This algorithms are tested for scheduling and rescheduling in dynamic JSSP. The results is compared with dispatching rule. In comparison to dispatching rule, the GA approach produces better scheduling performance.

Job Shop 일정계획을 위한 혼합 유전 알고리즘 (A Hybrid Genetic Algorithm for Job Shop Scheduling)

  • 박병주;김현수
    • 한국경영과학회지
    • /
    • 제26권2호
    • /
    • pp.59-68
    • /
    • 2001
  • The job shop scheduling problem is not only NP-hard, but is one of the well known hardest combinatorial optimization problems. The goal of this research is to develop an efficient scheduling method based on hybrid genetic algorithm to address job shop scheduling problem. In this scheduling method, generating method of initial population, new genetic operator, selection method are developed. The scheduling method based on genetic algorithm are tested on standard benchmark job shop scheduling problem. The results were compared with another genetic algorithm0-based scheduling method. Compared to traditional genetic, algorithm, the proposed approach yields significant improvement at a solution.

  • PDF

작업지향 탐색적 일정계획을 위한 LSB 기법 (LSB Algorithm for the Job Oriented Heuristic Scheduling)

  • 김현준;박창규
    • 경영과학
    • /
    • 제21권2호
    • /
    • pp.79-91
    • /
    • 2004
  • In industrial production settings, scheduling problems for detailed day-to-day operations are often ordeals to production practitioners. For those who have scheduling experiences with the Gantt Chart, the job oriented heuristic scheduling has illustrated its merits in solving practically large scale scheduling problems. It schedules all operations of a job within a finite capacity before considering the next job. In this paper, we Introduce the LSB (load smoothing backward) scheduling algorithm for the job oriented heuristic scheduling. Through a computer experiment in a hypothetical setting, we make a performance comparison of LSB scheduling algorithm with existing algorithms and also suggest a guideline for selecting the suitable algorithm for certain industrial settings.

퍼지 환경을 고려한 Job Shop에서의 일정계획 방법에 관한 연구 (A Study on Method for solving Fuzzy Environment-based Job Shop Scheduling Problems)

  • 홍성일;남현우;박병주
    • 산업경영시스템학회지
    • /
    • 제20권41호
    • /
    • pp.231-242
    • /
    • 1997
  • This paper describe an approximation method for solving the minimum makespan problem of job shop scheduling with fuzzy processing time. We consider the multi-part production scheduling problem in a job shop scheduling. The job shop scheduling problem is a complex system and a NP-hard problem. The problem is more complex if the processing time is imprecision. The Fuzzy set theory can be useful in modeling and solving scheduling problems with uncertain processing times. Lee-Li fuzzy number comparison method will be used to compare processing times that evaluated under fuzziness. This study propose heuristic algorithm solving the job shop scheduling problem under fuzzy environment. In This study the proposed algorithm is designed to treat opinions of experts, also can be used to solve a job shop environment under the existence of alternate operations. On the basis of the proposed method, an example is presented.

  • PDF

계산 그리드를 위한 서비스 예측 기반의 작업 스케쥴링 모델 (Service Prediction-Based Job Scheduling Model for Computational Grid)

  • 장성호;이종식
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 2005년도 춘계학술대회 논문집
    • /
    • pp.29-33
    • /
    • 2005
  • Grid computing is widely applicable to various fields of industry including process control and manufacturing, military command and control, transportation management, and so on. In a viewpoint of application area, grid computing can be classified to three aspects that are computational grid, data grid and access grid. This paper focuses on computational grid which handles complex and large-scale computing problems. Computational grid is characterized by system dynamics which handles a variety of processors and jobs on continuous time. To solve problems of system complexity and reliability due to complex system dynamics, computational grid needs scheduling policies that allocate various jobs to proper processors and decide processing orders of allocated jobs. This paper proposes the service prediction-based job scheduling model and present its algorithm that is applicable for computational grid. The service prediction-based job scheduling model can minimize overall system execution time since the model predicts a processing time of each processing component and distributes a job to processing component with minimum processing time. This paper implements the job scheduling model on the DEVSJAVA modeling and simulation environment and simulates with a case study to evaluate its efficiency and reliability Empirical results, which are compared to the conventional scheduling policies such as the random scheduling and the round-robin scheduling, show the usefulness of service prediction-based job scheduling.

  • PDF

유전알고리즘에 기반한 Job Shop 일정계획 기법 (A Genetic Algorithm-based Scheduling Method for Job Shop Scheduling Problem)

  • 박병주;최형림;김현수
    • 경영과학
    • /
    • 제20권1호
    • /
    • pp.51-64
    • /
    • 2003
  • The JSSP (Job Shop Scheduling Problem) Is one of the most general and difficult of all traditional scheduling problems. The goal of this research is to develop an efficient scheduling method based on genetic algorithm to address JSSP. we design scheduling method based on SGA (Single Genetic Algorithm) and PGA (Parallel Genetic Algorithm). In the scheduling method, the representation, which encodes the job number, is made to be always feasible, initial population is generated through integrating representation and G&T algorithm, the new genetic operators and selection method are designed to better transmit the temporal relationships in the chromosome, and island model PGA are proposed. The scheduling method based on genetic algorithm are tested on five standard benchmark JSSPs. The results were compared with other proposed approaches. Compared to traditional genetic algorithm, the proposed approach yields significant improvement at a solution. The superior results indicate the successful Incorporation of generating method of initial population into the genetic operators.

계산 그리드를 위한 서비스 예측 기반의 작업 스케줄링 모델 (Service Prediction-Based Job Scheduling Model for Computational Grid)

  • 장성호;이종식
    • 한국시뮬레이션학회논문지
    • /
    • 제14권3호
    • /
    • pp.91-100
    • /
    • 2005
  • Grid computing is widely applicable to various fields of industry including process control and manufacturing, military command and control, transportation management, and so on. In a viewpoint of application area, grid computing can be classified to three aspects that are computational grid, data grid and access grid. This paper focuses on computational grid which handles complex and large-scale computing problems. Computational grid is characterized by system dynamics which handles a variety of processors and jobs on continuous time. To solve problems of system complexity and reliability due to complex system dynamics, computational grid needs scheduling policies that allocate various jobs to proper processors and decide processing orders of allocated jobs. This paper proposes a service prediction-based job scheduling model and present its scheduling algorithm that is applicable for computational grid. The service prediction-based job scheduling model can minimize overall system execution time since the model predicts the next processing time of each processing component and distributes a job to a processing component with minimum processing time. This paper implements the job scheduling model on the DEVS modeling and simulation environment and evaluates its efficiency and reliability. Empirical results, which are compared to conventional scheduling policies, show the usefulness of service prediction-based job scheduling.

  • PDF

유연 Job Shop 일정계획의 유연성에 대한 시뮬레이션 (Simulation for Flexibility of Flexible Job Shop Scheduling)

  • 김상천;김정자;이상완;이성우
    • 한국산업융합학회 논문집
    • /
    • 제4권3호
    • /
    • pp.281-287
    • /
    • 2001
  • Traditional job shop scheduling is supposed that machine has a fixed processing job type. But actually the machine has a highly utilization or long processing time is occurred delay. Therefore product system is difficult to respond quickly to the change of products or loads or machine failure etc. Here we use flexible job shop which is supposed that a machine has several jobs by tool change. The heuristic for the flexible job shop scheduling has to solve two problems. One is a routing problem which is determine a machine to process job. The other is sequencing problem which is determine processing sequence. The approach to solve two problems arc a hierarchical approach which is determined routing and then schedule, and a concurrence approach which is solved concurrently two problems by considering routing when it is scheduled. In this study, we simulate for flexibility efficiency fo flexible job shop scheduling with machine failure using hierarchical approach.

  • PDF

계산 그리드를 위한 퍼지로직 기반의 그리드 작업 스케줄링 모델 (Fuzzy Logic-based Grid Job Scheduling Model for omputational Grid)

  • 박량재;장성호;조규철;이종식
    • 한국컴퓨터정보학회논문지
    • /
    • 제12권5호
    • /
    • pp.49-56
    • /
    • 2007
  • 계산 그리드 컴퓨팅은 수많은 컴퓨팅 자원들을 이용하여, 슈퍼 컴퓨팅이나 이전의 분산 컴퓨팅으로 해결 할 수 없는 대용량의 연산 문제를 해결한다. 계산 그리드 컴퓨팅 환경에서의 자원은 이 기종으로 구성되어, 효율적인 작업 처리를 위해서는 스케줄링 기법이 필요하다. 본 논문에서는 계산 그리드에서 효율적인 작업 스케줄링을 위하여 퍼지로직 기반의 그리드 작업 스케줄링 모델을 제안한다. 퍼지로직 기반의 그리드 작업 스케줄링 모델은 퍼지로직을 이용하여 자원의 효율성을 평가하며, 평가된 기반으로 그룹을 구성하여 작업을 할당하는 모델이다. 우리는 DEVS 모델링 & 시뮬레이션 환경에서 시뮬레이션 모델을 구성하고 Random 스케줄링과 MCT 스케줄링 모델과의 비교 실험을 통하여 제안된 퍼지로직 기반의 그리드 작업 스케줄링 모델이 작업완료시간, 작업손실, 통신량을 개선함으로써 더욱 더 안정적이고 빠른 작업 처리 서비스를 그리드 사용자에게 제공할 수 있다는 사실을 증명하였다.

  • PDF

Mobile Resource Reliability-based Job Scheduling for Mobile Grid

  • Jang, Sung-Ho;Lee, Jong-Sik
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제5권1호
    • /
    • pp.83-104
    • /
    • 2011
  • Mobile grid is a combination of grid computing and mobile computing to build grid systems in a wireless mobile environment. The development of network technology is assisting in realizing mobile grid. Mobile grid based on established grid infrastructures needs effective resource management and reliable job scheduling because mobile grid utilizes not only static grid resources but also dynamic grid resources with mobility. However, mobile devices are considered as unavailable resources in traditional grids. Mobile resources should be integrated into existing grid sites. Therefore, this paper presents a mobile grid middleware interconnecting existing grid infrastructures with mobile resources and a mobile service agent installed on the mobile resources. This paper also proposes a mobile resource reliability-based job scheduling model in order to overcome the unreliability of wireless mobile devices and guarantee stable and reliable job processing. In the proposed job scheduling model, the mobile service agent calculates the mobile resource reliability of each resource by using diverse reliability metrics and predicts it. The mobile grid middleware allocated jobs to mobile resources by predicted mobile resource reliability. We implemented a simulation model that simplifies various functions of the proposed job scheduling model by using the DEVS (Discrete Event System Specification) which is the formalism for modeling and analyzing a general system. We also conducted diverse experiments for performance evaluation. Experimental results demonstrate that the proposed model can assist in improving the performance of mobile grid in comparison with existing job scheduling models.