• Title/Summary/Keyword: Jet pump

Search Result 102, Processing Time 0.024 seconds

Development of Synthetic Jet Micro Air Pump (Synthetic Jet 마이크로 에어펌프의 개발)

  • Choi, J.P.;Kim, K.S.;Seo, Y.H.;Ku, B.S.;Jang, J.H.;Kim, B.H.
    • Transactions of Materials Processing
    • /
    • v.17 no.8
    • /
    • pp.594-599
    • /
    • 2008
  • This paper presents a micro air pump based on the synthetic jet to supply reactant at the cathode side for micro fuel cells. The synthetic jet is a zero mass flux device that converts electrical energy into the momentum. The synthetic jet actuation is usually generated by a traditional PZT-driven actuator, which consists of a small cylindrical cavity, orifices and PZT diaphragms. Therefore, it is very important that the design parameters are optimized because of the simple configuration. To design the synthetic jet micro air pump, a numerical analysis has been conducted for flow characteristics with respect to various geometries. From results of numerical analysis, the micro air pump has been fabricated by the PDMS replication process. The most important design factors of the micro air pump in micro fuel cells are the small size and low power consumption. To satisfy the design targets, we used SP4423 micro chip that is high voltage output DC-AC converter to control the PZT. The SP4423 micro chips can operate from $2.2{\sim}6V$ power supply(or battery) and is capable of supplying up to 200V signals. So it is possible to make small size controller and low power consumption under 0.1W. The size of micro air pump was $16{\times}13{\times}3mm^3$ and the performance test was conducted. With a voltage of 3V at 800Hz, the air pump's flow rate was 2.4cc/min and its power consumption was only 0.15W.

Preliminary Design on Jet Pump for Fuel Transfer and Analysis of Flow Distribution (연료 이송용 제트펌프 기본 설계 및 유동장 해석)

  • Kong Chang-Duk;Park Jong-Ha;Kim Young-Kwang;Han Dong-Joo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.125-129
    • /
    • 2006
  • In the present study, preliminary design and analysis of flow distribution for a jet pump, which is able to transfer fuel from the tank to the engine, were performed as an aerospace component technology development project. The jet pump is a core part, which is normally installed in the fuel tank, to supply the fuel from the tank to the engine feed pump, or to transfer the feed between tanks. In order to design preliminarily installed in the jet pump, equations for design were modelled using SIMULINK, and the design was carried out based on the simulation model.

  • PDF

Study o Preliminary Design on Jet Pump for Fuel Transfer Using SIMULINK (SIMULINK를 이용한 연료 이송용 제트펌프 기본 설계에 관한 연구)

  • Kong Chang-Duk;Park Jong-Ha;Omollo Owino George;Han Dong-Joo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.464-468
    • /
    • 2005
  • In the present study, preliminary design and performance analysis for a jet pump, which is able to transfer fuel from the tank to the engine, were performed as an aerospace component technology development project. The jet pump is a core part, which is normally installed in the fuel tank, to supply the fuel from the tank to the engine feed pump, or to transfer the feed between tanks. In order to design preliminarily installed in the jet pump, equations for design were modelled using SIMULINK, and the design was carried out based on the simulation model.

  • PDF

Study on Preliminary Design of Fuel Transfer Jet Pump Using SIMULINK (SIMULINK를 이용한 연료 이송용 제트펌프 기본 설계에 관한 연구)

  • Kong Chang-Duk;Park Jong-Ha;Han Dong-Joo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.1
    • /
    • pp.38-43
    • /
    • 2006
  • In the present study, preliminary design and analysis for a jet pump, which is able to transfer fuel from the tank to the engine, were performed as an aerospace component technology development project. The jet pump is a core part, which is normally installed in the fuel tank, to supply the fuel from the tank to the engine feed pump, or to transfer the feed between tanks. In order to design preliminarily installed in the jet pump, equations for design were modelled using SIMULINK, and the design was carried out based on the simulation model.

Flow Analyses Inside Jet Pumps Used for Oil Wells

  • Samad, Abdus;Nizamuddin, Mohammad
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.1
    • /
    • pp.1-10
    • /
    • 2013
  • Jet pump is one type of artificial lifts and is used when depth and deviation of producing wells increases and pressure depletion occurs. In the present study, numerical analysis has been carried out to analyze the flow behavior and find the performance of the jet pump. Reynolds-averaged Navier Stokes equations were solved and k-${\varepsilon}$ turbulence model was used for simulations. Water and light oil as primary fluids were used to pump water, light oil and heavy oil. The ratios of area and length to diameter of the mixing tube were considered as design parameters. The pump efficiency was considered to maximize for the downhole conditions. It was found that the increase in viscosity and density of the secondary fluid reduced efficiency of the system. Water as primary fluid produced better efficiency than the light oil. It was also found that the longer throat length increased efficiency upto 40% if light oil was used as primary fluid and secondary fluid viscosity was 350 cSt.

Design and Performance Analysis of a Fuel Transfer Jet Pump in the Smart UAV Fuel Supply System (스마트무인기연료공급시스템 연료이송 제트펌프의 설계 및 성능해석에 관한 연구)

  • Park, Sul-Hye;Lee, Yoon-Kwon;Lee, Jee-Keun;Lee, Chang-Ho;Lee, Soo-Chul;Choi, Hee-Joo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.11
    • /
    • pp.1013-1021
    • /
    • 2007
  • Design and performance analysis of the jet pump to transfer fuel between tanks in the smart UAV fuel supply system were carried out through one dimensional flow analysis and the flow analysis using a commercial CFD code. From the analysis results, it was proved that the jet pump was designed with the flow ratio of 2.23 that is the fundamental requirement of the jet pump design. The comparison results showed that the primary nozzle pressure is higher in the CFD analysis than in one dimensional flow analysis, mainly due to the underestimated loss coefficient of the primary nozzles. Consequently, the loss coefficients of the jet pump components should be determined more precisely for the design of the jet pumps with high performance.

A Study on the Characteristics of Jet Pump Having Exteriorly Connected Multi-nozzles (다중 노즐을 이용한 중앙 분사형 제트 펌프의 성능에 관한 연구)

  • Kim, M.K.;Kwon, O.B.;Kim, H.G.;Lee, C.G.
    • Journal of Power System Engineering
    • /
    • v.4 no.1
    • /
    • pp.33-38
    • /
    • 2000
  • The characteristics of center-driver jet pump which have multi-nozzle were studied in this research. Jet nozzles are connected outside of the bend rather than inserted in the bend in order to transport solid materials or fish without any harm. Jet pumps having one nozzle, two nozzles, four nozzles, and sixteen nozzles were tested in this study. The efficiencies and performances of jet pumps were studied for several nozzles shape, for three different mixing chamber shapes, for two suction area shapes. All the efficiency curves for these cases are presented in this paper.

  • PDF

Numerical Analysis of Flow Field and Performance of Water Jet Pump (수분사 펌프의 유동 및 성능 해석)

  • Cho, Jang-keun;Park, Warn-gyu
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.2 s.3
    • /
    • pp.64-73
    • /
    • 1999
  • The three-dimensional numerical study of a water jet pump was carried out to investigate the relationship between performance and the geometric variables of nozzle space, area ratio, and throat length. Because of the complex geometry, the multiblock technique was adopted for numerical analysis and a special treatment for transferring data from each of the block interfaces was implemented in order to maintain the conserved properties. To validate the present code, flow passing through a square duct with a 90-deg bend was computed, our results show good accordance with other experimental and computational results. The numerical simulation was done with the flow of the water jet pump having a 180-deg bend in order to calculate the performance at different operating conditions. The performance of the water jet pump can be improved by study of parameters which clarify the relations between the geometric variables and the flow characteristics of vortex strength and location.

  • PDF

Flow Characteristics of a Jet Pump by the Angle Variation of a Suction Pipe (분사펌프의 흡입관 각도 변화에 따른 유동특성)

  • Kim, Noh Hyeong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.6
    • /
    • pp.61-67
    • /
    • 2016
  • In this study, STAR-CD-based CFD techniques was used to analyze velocity distribution and pressure distribution according to the variation of angels at $45^{\circ}$, $60^{\circ}$ and $90^{\circ}$ a suction pipe when inlet velocity condition is 1 m/s. SIMPLE maritime law used for analytical algorithm and the results of CFD analysis evaluated by particle image velocimetry (PIV). The results of CFD analysis in this study have revealed that the optimal angle of a suction pipe for a jet pump is $90^{\circ}$ and the PIV test has showed the same results. Therefore, it is thought that when CFD is used to analyze the flow characteristics of a jet pump it would be possible to produce optimal designs of its devices.

FLOWING OF THE SYSTEM THE UNDERWATER VEHICLES HULL THE NOZZLE OF PUMP-JET PROPELLER WITH AMOLES OF ATTACK

  • Lee, Kwi-Joo;Nikushchenko, Dmitry V.;Park, Weon-Me
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.275-280
    • /
    • 2002
  • Results of a numerical simulation of a flowing of the underwater vehicles hull with the pump-jet nozzle are presented. It was calculate velocity distributions and coefficients of the lift force and the longitudinal moment of the hull with the pump-jet nozzle and isolated hull for some values of angle of attack. It was shown that the area of tile influence of the nozzle on the velocities distribution of the hull and character of changing of coefficients of the lift force and the longitudinal moment and their derivatives depending on angle of attack.

  • PDF