• Title/Summary/Keyword: Jet penetration

Search Result 127, Processing Time 0.024 seconds

Numerical simulation on jet breakup in the fuel-coolant interaction using smoothed particle hydrodynamics

  • Choi, Hae Yoon;Chae, Hoon;Kim, Eung Soo
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3264-3274
    • /
    • 2021
  • In a severe accident of light water reactor (LWR), molten core material (corium) can be released into the wet cavity, and a fuel-coolant interaction (FCI) can occur. The molten jet with high speed is broken and fragmented into small debris, which may cause a steam explosion or a molten core concrete interaction (MCCI). Since the premixing stage where the jet breakup occurs has a large impact on the severe accident progression, the understanding and evaluation of the jet breakup phenomenon are highly important. Therefore, in this study, the jet breakup simulations were performed using the Smoothed Particle Hydrodynamics (SPH) method which is a particle-based Lagrangian numerical method. For the multi-fluid system, the normalized density approach and improved surface tension model (CSF) were applied to the in-house SPH code (single GPU-based SOPHIA code) to improve the calculation accuracy at the interface of fluids. The jet breakup simulations were conducted in two cases: (1) jet breakup without structures, and (2) jet breakup with structures (control rod guide tubes). The penetration depth of the jet and jet breakup length were compared with those of the reference experiments, and these SPH simulation results are qualitatively and quantitatively consistent with the experiments.

Characteristics of Heat/Mass Transfer and Film Cooling Effectiveness Around a Shaped Film Cooling Hole (변형된 단일 막냉각홀 주위에서의 열/물질전달 및 막냉각효율 특성)

  • Rhee, Dong Ho;Kim, Byunggi;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.5
    • /
    • pp.577-586
    • /
    • 1999
  • Two problems with jet injection through the cylindrical film cooling hole are 1) penetration of jet into mainstream rather than covering the surface at high blowing rates and 2) nonuniformity of the film cooling effectiveness in the lateral direction. Compound angle injection is employed to reduce those two problems. Compound angle injection increases the film cooling effectiveness and spreads more widely. However, there is still lift off at high blowing rates. Shaped film cooling hole is a possible means to reduce those two problems. Film cooling with the shaped hole is investigated in this study experimentally. Film cooling hole used in present study is a shaped hole with conically enlarged exit and Inlet-to-exit area ratio is 2.55. Naphthalene sublimation method has been employed to study the local heat/mass transfer coefficient and film cooling effectiveness for compound injection angles and various blowing rates around the shaped film cooling hole. Enlarged hole exit area reduces the momentum of the jet at the hole exit and prevents the penetration of injected jet into the mainstream effectively. Hence, higher and more uniform film cooling effectiveness values are obtained even at relatively high blowing rates and the film cooling jet spreads more widely with the shaped film cooling hole. And the injected jet protects the surface effectively at low blowing rates and spreads more widely with the compound angle injections than the axial injection.

A Numerical Analysis of Counter Jet Flow Effect on the Blunt-Body Vehicle (역분사 유동이 초음속 비행체에 미치는 영향에 대한 수치해석적 연구)

  • Seo Duck Kyo;Seo Jeong Il;Song Dong Joo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.05a
    • /
    • pp.29-34
    • /
    • 2002
  • TIn this study, the counter-jet flows which designed for improvement of aerodynamic performance of the blunt body vehicle have been analyzed. The variations of the drag force and jet penetration depth due to changes in the stagnation properties of counter jet new such as total pressure, mach number, and total temperature. The counter jet flow, which is injected toward incoming supersonic freestream at stagnation region of blunt cone-cylinder vehicle, have been studied by using upwind flux difference splitting navier-stokes method. The changes in the stagnation pressure and Mach number resulted in large effects on the wall pressure and drag force, on the other hand tile total temperature changes did not.

  • PDF

Spray Characteristics of a Pulsed Liquid Jet into a Cross-flow of Air (아음속 횡단 유동장으로 펄스 분사된 액체 제트의 분무특성)

  • Lee, In-Chul;Byun, Young-Wu;Koo, Ja-Ye
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.61-64
    • /
    • 2008
  • The present study of these experiments are close examination of spray characteristics that are continuous liquid jet and modulated pressure pulse liquid jet. The experiments were conducted using water, over a range of cross-flow velocities from 42${\sim}$136 m/s, with injection frequencies of 35.7${\sim}$166.2 Hz. Between continuous cross-flow jet and pressure pulsed cross-flow jet for characteristics of penetration, breakup point, spray angle and macro spray shape are investigated experimentally. In cross-flow field, main parameter of liquid jet for breakup was cross-flow stream rather than pressure pulse frequency. As oscillation of the periodic pressure that could make liquid jet moved up and down, the mixing efficiency was increased. Also, a bulk of liquid jet puff was detected at upper field of liquid surface. So, this phenomenon has a good advantage of mixing spray from concentration of center area to outer area. Because of pressure pulsation frequency, an inclination of SMD for the structured layer was evanescent. Cross-sectional characteristics of SMD at downstream area were non-structured distributions. Then cross-sectional characteristics of SMD size were about same tendency over a range that is effect of spray mixing. The tendency of volume flux value for various frequency of pressure pulse was same distribution. And volume flux was decreased when the frequency of pressure pulse increase.

  • PDF

Performance Test of Domestic Glass Fabric by varying cleaning conditions in a Pulse-Jet Cleaned Fabric Filter (충격기류 탈진방식 여과포집진장치에서 탈진조건 변화에 따른 국산유리섬유여과포의 성능시험)

  • 박영옥;구철오;임정환;김영성;손재익
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.10 no.3
    • /
    • pp.183-190
    • /
    • 1994
  • Performance of domestic glass fabrics was tested in a Pulse- jet cleaned fabric filter under simulated coal combustion. Pulse Pressure were 2.5, 4.0kgf/$\textrm{cm}^2$ and pulse air nozzle diameter were 4.0, 6.0mm Pressure drop and penetration turned out to be low at small pulse air nozzle diameter and low pulse air pressure. Fractional penetration through the dust cake and fabric at face velocity of 1.7m/min was higher than that at face velocity of 1.0m/min. As a consequense, the performance of domestic glass fabrics was better with face velocity of less than 1.0m/min, pulse air pressure of 2.5 kgf/$\textrm{cm}^2$ and pusle air nozzle diameter of 4.0mm.

  • PDF

Experimental Study on Fuel/Air Mixing using the Cavity in the Supersonic Flow (초음속 유동장 내의 공동을 이용한 연료/공기 혼합에 관한 실험적 연구)

  • Kim Chae-Hyoung;Jeong Eun-Ju;Jeung In-Seuck
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.64-71
    • /
    • 2005
  • To achieve efficient supersonic combustion within a manageable length, a successful fuel injection scheme must provide rapid mixing between fuel and airstream. In former days, various injection concepts have been investigated. Cavity flow is the open type, that is, length-to-depth ratio L/D=4.8, aft ramp angle is $22.5^{\circ}$. An experimental study on a transverse cross jet injection into a Mach 1.92 supersonic main stream which flows over a cavity was carried out to investigate the effect of the momentum flux ratio(J), the jet interaction characteristics, and the pressure distribution in the combustor and using the primary diagnostics : schlieren visualization and wall static pressure measurements. Fuel penetration height and jet interaction characteristics depend strongly on the momentum flux ratio.

  • PDF

LES of breakup and atomization of a liquid jet into cross turbulent flow (비정상 난류 유동장에서 수직 분사 액주의 분열 및 기화에 관한 LES)

  • Yang, Seung-Joon;Sung, Hong-Gye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.99-102
    • /
    • 2009
  • LES(Large eddy simulation) of breakup and atomization of a liquid jet into cross turbulent flow was performed. Two phase flow between a gas phase and a liquid phase was modeled by a mixed numerical scheme of both Eulerian and Lagrangian methods for gas and liquid phases respectively. The first and second breakup of liquid column was observed. The penetration depth in cross flow was comparable with experimental data for several variant of a liquid-gas momentum flux ratio by varying liquid injection velocities. SMD(Sauter Mean Diameter) distribution downstream of jet was analyzed.

  • PDF

Characteristics of the Spray and Combustion in the Liquid Jet (고온, 고속기류 중에 수직 분사되는 연료제트의 분무 및 연소특성)

  • Youn, H.J.;Lee, G.S.;Lee, C.W.
    • Journal of ILASS-Korea
    • /
    • v.7 no.3
    • /
    • pp.12-17
    • /
    • 2002
  • In this paper, spray and combustion characteristics of a liquid-fueled ramjet engine were experimentally investigated. The spray penetrations were measured to clarify the spray characteristics of a liguid jet injected transversely into the subsonic vitiated airstream, which is maintained a high velocity and temperature. The spray penetrations are increased with decreasing airstream velocity, increasing airstream temperature, and increasing air-fuel momentum ratio. To compensate our results of penetrations, the new experimental equation were modified from Inamura's equation. In the case of insufficient penetration, the combustion phenomenon in ram-combustor were unstable. Therefore, the temperature distribution was slanted to the low wall of the ram-combustor. These trends gradually disappeared as the length and air temperature of the combustor became longer. Combustion efficiency increased when the length of the combustor was long and the air temperature was high. Especially, stable flame region is enlarged when the length of the combustor was long and the air temperature was high. Type Abstract here. Type Abstract here.

  • PDF

Air horizontal jets into quiescent water

  • Weichao Li ;Zhaoming Meng;Jianchuang Sun;Weihua Cai ;Yandong Hou
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2011-2017
    • /
    • 2023
  • Gas submerged jet is an outstanding thermohydraulic phenomenon in pool scrubbing of fission products during a severe nuclear accident. Experiments were performed on the hydraulic characteristics in the ranges of air mass flux 0.1-1400 kg/m2s and nozzle diameter 10-80 mm. The results showed that the dependence of inlet pressure on the mass flux follows a power law in subsonic jets and a linear law in sonic jets. The effect of nozzle submerged depth was negligible. The isolated bubbling regime, continuous bubbling regime, transition regime, and jetting regime were observed in turn, as the mass flux increased. In the bubbling regime and jetting regime, the air volume fraction distribution was approximately symmetric in space. Themelis model could capture the jet trajectory well. In the transition regime, the air volume fraction distribution loses symmetry due to the bifurcated secondary plume. The Li correlation and Themelis model showed sufficient accuracy for the prediction of jet penetration length.

Keyhole-structure and Stability in Laser-beam Penetration Into an Absorbing Liquid (Water) (레이저 빔의 흡수 액체 내 침투에 의해 생성된 키홀 구조와 안정성)

  • 김동식;장덕석
    • Laser Solutions
    • /
    • v.4 no.2
    • /
    • pp.13-19
    • /
    • 2001
  • When a high-power laser beam is irradiated on the surface of material, it is well known that a cavity, called a keyhole induced by the pressure action of the vapor plume, is generated in the molten material. This paper describes the interaction between a pulsed CO$_2$ laser beam and water. The laser-beam is used to generate and maintain a conical depression in the water surface similar to the keyhole created during laser penetration welding. Experimental results show that the depth of laser-beam penetration is limited by hydrodynamic instability. The instability of the surface cavity can be understood by the capillary instability of a hollow jet. Theoretical computation of the steady keyhole shape has been performed. modifying the model suggested by Andrews et al. (1976). The model predicts the qualitative behavior of the keyhole but significantly underestimates the average diameter.

  • PDF