• 제목/요약/키워드: Jet milling

검색결과 28건 처리시간 0.024초

쌀가루의 제분형태 및 첨가방법이 연제품의 물리적 및 관능적 특성에 미치는 영향 (Effects of Rice Flour Milling Types and Addition Methods on Rheological and Sensory Properties of Surimi Products)

  • 조승목;윤민석;김선봉
    • 한국수산과학회지
    • /
    • 제46권2호
    • /
    • pp.139-146
    • /
    • 2013
  • Surimi products are among the most prominent seafoods in Korea. Together with fish meat, wheat flour is a major ingredient in the preparation of surimi products. Rice flour, however, can be an effective ingredient in enhancing the rheological characteristics of surimi products. In this study, we evaluated the potential of rice flour as an agent to replace wheat flour in surimi products. The effects of rice flour milling types and addition methods on the rheological and sensory properties of surimi products were investigated. Among different addition methods, the surimi product containing non-treated rice flour showed better gel strength and sensory properties than products containing paste (1:1.3 rice flour/water, w/v) and steamed paste (steamed at $100^{\circ}C$ for 30 min). According to the gel strength results for surimi products with added roll-mill (40 mesh) and jet-mill (180 mesh) rice flours, the roll-mill rice flour shows good potential as a replacement for wheat flour. When considering gel strength and sensory properties, an effective amount of rice flour to add was 10-15% (w/w). In conclusion, the rheological and sensory properties of surimi products containing rice flour were comparable with those of a premium commercial surimi product. Therefore, rice flour might be an effective alternative to wheat flour for premium surimi products.

Tripod polishing을 이용한 IBAD/RABiTS 기판의 TEM 분석 (TEM analysis of IBAD/RABiTS substrates prepared by Tripod polishing)

  • 최순미;정준기;유상임;박찬;오상수;김철진
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제8권1호
    • /
    • pp.9-14
    • /
    • 2006
  • Sample preparation plays a critical role in microstructure analysis using TEM. Although TEM specimen has been usually prepared by jet-polishing or Ar-ion beam milling technique. these methods could not be applied to YBCO CC which is composed of IBAD or RABiTS substrates, several buffet layers, and YBCO superconducting layer because of big difference in mechanical strengths between the metallic phase and oxide phases. To obtain useful cross-sectional information such as interface between the phases or second phases in YBCO CC, it is prerequisite to secure the large area of thin section in the cross-sectional direction. The superconducting layer or the buffer layers are relatively weak and fragile compared to the metallic substrate such as Ni-5wt%W RABiTS of Hastelloy-based IBAD, and preferential removal of weak ceramic phases during polishing steps makes specimen preparation almost impossible. Tripod polisher and small jig were home-made and employed to sample preparation. The polishing angle was maintained <$1^{\circ}$ throughout the polishing steps using 2 micrometers attached to the tripod plate. TEM specimens with large and thin area could be secured and used for RABiTS/IBAD substrate analyses. In some cases, additional Ar-beam ion milling with low beam current and impinging angle was used for less than 30 sec. to remove debris or polishing media attacked to the specimens.

Comparison of prosthetic models produced by traditional and additive manufacturing methods

  • Park, Jin-Young;Kim, Hae-Young;Kim, Ji-Hwan;Kim, Jae-Hong;Kim, Woong-Chul
    • The Journal of Advanced Prosthodontics
    • /
    • 제7권4호
    • /
    • pp.294-302
    • /
    • 2015
  • PURPOSE. The purpose of this study was to verify the clinical-feasibility of additive manufacturing by comparing the accuracy of four different manufacturing methods for metal coping: the conventional lost wax technique (CLWT); subtractive methods with wax blank milling (WBM); and two additive methods, multi jet modeling (MJM), and micro-stereolithography (Micro-SLA). MATERIALS AND METHODS. Thirty study models were created using an acrylic model with the maxillary upper right canine, first premolar, and first molar teeth. Based on the scan files from a non-contact blue light scanner (Identica; Medit Co. Ltd., Seoul, Korea), thirty cores were produced using the WBM, MJM, and Micro-SLA methods, respectively, and another thirty frameworks were produced using the CLWT method. To measure the marginal and internal gap, the silicone replica method was adopted, and the silicone images obtained were evaluated using a digital microscope (KH-7700; Hirox, Tokyo, Japan) at 140X magnification. Analyses were performed using two-way analysis of variance (ANOVA) and Tukey post hoc test (${\alpha}=.05$). RESULTS. The mean marginal gaps and internal gaps showed significant differences according to tooth type (P<.001 and P<.001, respectively) and manufacturing method (P<.037 and P<.001, respectively). Micro-SLA did not show any significant difference from CLWT regarding mean marginal gap compared to the WBM and MJM methods. CONCLUSION. The mean values of gaps resulting from the four different manufacturing methods were within a clinically allowable range, and, thus, the clinical use of additive manufacturing methods is acceptable as an alternative to the traditional lost wax-technique and subtractive manufacturing.

Evaluation of the marginal and internal fit of a single crown fabricated based on a three-dimensional printed model

  • Jang, Yeon;Sim, Ji-Young;Park, Jong-Kyoung;Kim, Woong-Chul;Kim, Hae-Young;Kim, Ji-Hwan
    • The Journal of Advanced Prosthodontics
    • /
    • 제10권5호
    • /
    • pp.367-373
    • /
    • 2018
  • PURPOSE. To evaluate the fit of a crown produced based on a 3D printed model and to investigate its clinical applicability. MATERIALS AND METHODS. A master die was fabricated with epoxy. Stone dies were fabricated from conventional impressions (Conventional stone die group: CS, n=10). Digital virtual dies were fabricated by making digital impressions (Digital Virtual die group: VD, n=10). 3D data obtained from the digital impression was used to fabricate 3D printed models (DLP die group: DD, n=10, PolyJet die group: PD, n=10). A total of 40 crowns were fabricated with a milling machine, based on CS, VD, DD and PD. The inner surface of all crowns was superimposed with the master die files by the "Best-fit alignment" method using the analysis software. One-way and 2-way ANOVA were performed to identify significant differences among the groups and areas and their interactive effects (${\alpha}=.05$). Tukey's HSD was used for post-hoc analysis. RESULTS. One-way ANOVA results revealed a significantly higher RMS value in the 3D printed models (DD and PD) than in the CS and DV. The RMS values of PD were the largest among the four groups. Statistically significant differences among groups (P<.001) and between areas (P<.001) were further revealed by 2-way ANOVA. CONCLUSION. Although the fit of crowns fabricated based on the 3D printed models (DD and PD) was inferior to that of crowns prepared with CS and DV, the values of all four groups were within the clinically acceptable range (<$120{\mu}m$).

HD 처리 및 열처리공정 개선에 의한 (Nd, Dy)-Fe-B 소결자석의 자기특성 향상 (Improvement of the Magnetic Properties of (Nd, Dy)-Fe-B Sintered Magnets by Modification of HD and Annealing Processes)

  • 남궁석;이연호;김문갑;장태석
    • 한국분말재료학회지
    • /
    • 제17권5호
    • /
    • pp.359-364
    • /
    • 2010
  • In an attempt to optimize the magnetic properties of (Nd, Dy)-Fe-B sintered magnets, hydrogenation and post-sintering heat treatment processes were investigated at various hydrogenation temperatures and heat treatment temperatures. The coercivity of (Nd, Dy)-Fe-B sintered magnets hydrogenated at $400^{\circ}C$ increased to about 1.2 kOe without any detrimental effect on the remanence. Moreover, the coercivity of the magnets was enhanced further by a consecutive $2^{nd}$ and $3^{rd}$ step heat treatment. These results eventually leaded to the reduction of the Dy content in a high coercive (> 30 kOe) (Nd, Dy)-Fe-B sintered magnets, as much as 10%.

High Coercive Nd-Fe-B Sintered Magnets for High Temperature Application

  • Kim, D.H.;Kim, A.S.;Lim, T.H.;Jang, T.S.
    • Journal of Magnetics
    • /
    • 제14권1호
    • /
    • pp.27-30
    • /
    • 2009
  • Various sintered magnets containing $28{\sim}31\;wt%$ Nd and $0{\sim}7\;wt%$ Dy were evaluated for coercivity and irreversible flux loss as a preliminary study to develop highly-coercive, high-temperature magnets that can be applied for driving motors in a hybrid vehicle. The sintered magnets were prepared in sequence of strip casting, HD treatment, jet milling, magnetic field pressing, sintering and post-annealing. Increasing Dy content and adjusting post-annealing temperature monotonically increased coercivity of magnets from about 14 kOe to 30 kOe. A magnet containing 28 wt% Nd and 7 wt% Dy exhibits a $(BH)_{max}$+$_i{H_c}$ value of almost 64. This is very close to what the automobile industry considers as the minimum value (65) for a hybrid vehicle system. Moreover, irreversible flux loss of the magnet was about 3% at $200^{\circ}C$, which is well less than the allowable limit (5%) to a driving motor in hybrid vehicles.

초음파 처리 활용 실시간 투과전자현미경 관찰용 금속 시편 전사 방법에 관한 연구 (A Study on the Method of Transferring Metal Specimens for Real-time Transmission Electron Microscopy using Ultrasonic Treatment)

  • 김황선
    • 소성∙가공
    • /
    • 제33권2호
    • /
    • pp.118-122
    • /
    • 2024
  • Micro-electromechanical systems (MEMS) based in-situ heating holders have been developed to enable high resolution imaging of heat treatment analysis. However, unlike the standard 3 mm metal disk specimens used in the furnace-based heating holder and general transmission electron microscopy holder, the MEMS-based in-situ heating holder requires thin specimens that can be penetrated by electrons to be transferred onto the MEMS chip. Previously, focused ion beam milling was used to transfer metal specimens, but it has the disadvantage of being expensive and the risk of specimen damage due to gallium ions. Therefore, in this study, we devised a method of transferring metallic materials by ultrasonic treatment using a transmission electron microscopy specimen made by electro jet polishing. A 3mm electropolished metal disk was placed in an appropriate solution, ultrasonicated, and then drop casted. The transfer of the specimen was successful, but it was confirmed that dislocations were formed inside the specimen due to ultrasonic treatment. This study provides a novel method for transferring metallic materials onto MEMS chips, which is cost-effective and less gallium ion damaging to the specimen. The results of this study can be used to improve the efficiency of heat treatment analysis using MEMS-based in-situ heating holders.

에어로졸 데포지션 공정으로 제작된 BaTiO3 필름 성장에 출발 원료가 미치는 영향 (Effect of Starting Powder on the Growth of BaTiO3 Film Prepared by Aerosol Deposition Process)

  • 조명연;김익수;이동원;구상모;오종민
    • 한국전기전자재료학회논문지
    • /
    • 제33권3호
    • /
    • pp.208-213
    • /
    • 2020
  • Four types of BaTiO3 powders are prepared and successfully deposited on glass and Pt/Si substrates using the aerosol deposition process. Particles with sizes of 0.45 ㎛ and 0.3 ㎛ are selected as the starting powder, while those powders are treated using a different milling method. The jet-milled and ball-milled powders not only showed a smaller particle-size distribution, but compared with the non-milled powder, it also had a higher deposition rate using the uniformly generated aerosol. Although the films deposited using particles with size 0.45 ㎛ exhibited some craters on the surface, significantly flat film surfaces were obtained. However, particles with size 0.3 ㎛ create a slightly rough film surface, but the dielectric constant was greater than in the case involving particles with size 0.45 ㎛. Consequently, a suitably large particle size significantly influences the deposition rate and improvement in the surface roughness, and a uniform particle size distribution appears to contribute to an improved dielectric constant. Therefore, it is believed that the dielectric properties along with the growth characteristics can be enhanced by limiting particle size and shape.