• Title/Summary/Keyword: Jet injector

Search Result 124, Processing Time 0.025 seconds

The Spray Characteristics of Jet in Crossflow with the Injector Shapes (노즐 형상에 따른 Jet in Crossflow의 분무 특성)

  • Yoon, Hyun-Jin;Lim, Young-Heon;Hong, Jung-Goo;Lee, Choong-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.438-444
    • /
    • 2010
  • The spray characteristics of jet in crossflow (JICF) to improve the atomization and mixing characteristics of liquid Jet, while minimizing the impact on crossflow, were studied experimentally. By varying the temperature, velocity, pressure of crossflow and the speed, pressure of liquid Jet, the spray boundary (outer boundary, inner boundary) with the change of crossflow and liquid jet momentum ratio (q) were measured and led the experimental formula, compared with the results of previous work. Specifically, when the jet penetration with the shape of injector were measured, in the case of dual orifice Injector, under the influence of front orifice, the jet penetration of back orifice was improved approximately 18% ($L_h$ = 4 mm), compared with single orifice injector.

  • PDF

Dynamic Characteristics of Coaxial Swirl-Jet Injector with Acoustic Excitation (동축형 스월-제트 인젝터의 음향가진에 따른 동특성)

  • Bae, Jinhyun;Kim, Taesung;Jeong, Seokgyu;Jeong, Chanyeong;Choi, Jeong Yeol;Yoon, Youngbin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.691-698
    • /
    • 2017
  • In this study, the injector transfer function (ITF) of a gas-gas coaxial jet-swirl injector is measured by applying excitation to jet or swirl flow using a loudspeaker. As a result of measuring the ITF according to the variation of feed system length, the ITF peak occurs at the resonance frequency of the space where the perturbed flow passes. When applying the excitation to the jet flow, as the jet flow increases up to 56 slpm, the magnitude of ITF decreases, and ITF increases thereafter. Therefore the larger the velocity difference between the jet and the swirl flow, the larger the ITF. In the case of the swirl excitation, the ITF decreases as the jet flow increases because of the decrease of the energy with respect to the constant flow at the downstream. This difference is caused by the location of the hot wire anemometer on the downstream of the injector center axis.

  • PDF

Phenomena of Liquid Jet Breakup in High Speed Gas Stream (고속유동장내 액체분열현상)

  • Park, Y.K.;Seok, J.K.;Lee, C.W.
    • Journal of ILASS-Korea
    • /
    • v.1 no.2
    • /
    • pp.66-73
    • /
    • 1996
  • The present study investigates experimentally the characteristics of liquid jet, which is, the spray flow in the normal direction of the air stream under the flow conditions of air velocity $110\sim125m/s$. The present study adopts with the flow visualization technique using a short duration light bulb and the image processing analyse with CCD camera. Two types of injector were used: one is a flat plate type, and the other is backward facing step type, which height are 5, 8, 10mm. Dispersion of liquid jet can be represented by gray level of CCD camera. In the upstream of liquid jet, the backward facing step shows better liquid jet penetration. However, in the downstream. mean droplet size for backward facing step injector is smaller than that for flat plate injector

  • PDF

Dynamic Characteristics of Coaxial Swirl-jet Injector with Acoustic Excitation (동축형 스월-제트 분사기의 음향가진에 따른 동특성)

  • Bae, Jinhyun;Kim, Taesung;Jeong, Seokgyu;Jeong, Chanyeong;Choi, Jeong Yeol;Yoon, Youngbin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.4
    • /
    • pp.99-107
    • /
    • 2018
  • In this study, the injector transfer function (ITF) of a gas-gas coaxial jet-swirl injector is measured by perturbing jet or swirl flow using a speaker as jet flow increases. As a result of measuring the ITF varying feed system length, a peak occurs at a resonance frequency of space where the perturbed flow passes. With jet excitation, the ITF magnitude decreases, but increases thereafter as increasing the jet flow. Therefore the larger the velocity difference between jet and swirl flow, the larger the ITF. With swirl excitation, ITF decreases as increasing the jet flow because of the energy decrease with respect to the constant downstream flow.

Cryogenic Jet Injection Test Using Liquid Nitrogen (액체 질소를 이용한 극저온 단일 제트 분사 시험)

  • Cho, Seong-Ho;Khil, Tae-Ock;Park, Gu-Jeong;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.597-600
    • /
    • 2010
  • Cold flow injection test was conducted to investigate the characteristics of cryogenic liquid nitrogen jet at sub to supercritical condition. Single jet injector element was installed in high pressure chamber to investigate the effect of ambient pressure around the jet, injector geometry and flow conditions. Experimental results showed obvious differences between jet characteristics under subcritical and supercritical condition. Effect of injector inlet shape also was investigated.

  • PDF

A Numerical Study on Combustion-Stability Rating of Impinging-Jet Injector Using Air-Injection Technique (공기분사 기법을 이용한 충돌형 제트 분사기의 연소 안정성 평가에 관한 수치적 연구)

  • Sohn, Chae-Hoon;Park, I-Sun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.11 s.254
    • /
    • pp.1093-1100
    • /
    • 2006
  • Combustion stability rating of jet injector is conducted numerically using air-injection technique in a model chamber, where air is supplied to oxidizer and fuel manifolds of the model five-element injector head. A sample F(fuel)-O(oxidizer)-O-F impinging-jet injector is adopted. In this technique, we can simulate mixing process of streams flowing through oxidizer and fuel orifices under cold-flow condition without chemical reaction. The model chamber was designed based on the methodologies proposed in the previous work regarding geometrical dimensions and operating conditions. From numerical data, unstable regions can be identified and they are compared with those from air-injection acoustic and hot-fire tests. The present stability boundaries are in a good agreement with experimental results. The proposed numerical method can be applied cost-effectively to stability rating of jet injectors when mixing of fuel and oxidizer jets is the dominant process in instability triggering.

Effect of Weber Number and Momentum Flux Ratio on Macroscopic Characteristics of Spray from a Coaxial Porous Injector (웨버수 및 운동량 플럭스비에 따른 동축형 다공성재 분사기의 거시적 분무특성)

  • Kim, Do-Hun;Seo, Min-Kyo;Lee, In-Chul;Koo, Ja-Ye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.5
    • /
    • pp.1-9
    • /
    • 2012
  • The gas jet from a coaxial porous injector for two-phase flows is discharged from the porous surface, which encloses the center liquid jet, and the gas and liquid jet interact with each other physically. The wall injected gas jet transfers the radial momentum effectively while the radial gas jet develops to axial jet, and the performance of atomizing and mixing can be improved. In this study, the Weber number and the ratio of momentum flux were controlled by changing the gas injection area and the mass flow rate of the gas jet, and a study on the spray characteristics at the cold-flow test using water and air simulant was performed. It is concluded that the radial momentum transfer concept of a coaxial porous injector gives a positive effect on the atomization and mixing of the two-phase spray.

A Breakup Mechanism of Liquid Impinging Jet (I) (충돌분무에 의한 분열현상 (I))

  • 이충원;석명수;석지권
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.16-16
    • /
    • 1998
  • 로켓의 추진제에는 고체 추진제와 액체 추진제를 사용하는 두 경우로 나눌 수 있는데, 액체 추진제를 사용하는 경우, 액체 연료와 액체 산화제를 다양한 방법으로 연소실내로 분사하게 된다. 이때 사용되는 injector들 중에 impingement type이 있다. 이 type은 injector의 가공이 비교적 용이하고, 혼합성능이 좋기 때문에 LOX/RP-1(Kerosin-based hydrocarbon fuel)을 사용하는 액체 로켓엔진에서 주로 사용되어 왔다. 두 액체 jet의 충돌에 의해 액막이 형성되는데, 이 액막은 가장자리로 갈수록 두께가 얇아지며 액막표면의 파는 충돌점으로부터 멀어질수록 그 진폭의 증가를 이루어 액체의 표면장력과 관성력의 균형을 깨트리며, 이 순간 액막은 rim의 형태로 분열하여 결국에는 액적을 생성하게 된다. 현재까지의 연구내용은 충돌 jet의 형태 laminar jet과 turbulent jet으로 구분된 인젝트에 관해 연구되어왔고, 특히 국내에는 이러한 구분된 충돌 jet의 분열현상에 관한 연구결과가 미흡하다. 동일한 오르피스의 경우에도 laminar jet과 turbulent jet으로 구분되어 지며, 각각의 jet의 형태에 따라 생성되는 액막의 형상 또는 다르게 생성되어 진다. 그러므로 본 연구에서는 두 구분된 jet의 경우의 분열현상을 실험적으로 분석하였다.

  • PDF

Effect of Injector Geometry on Cryogenic Jet Flow (극저온 제트 유동에 대한 분사기 형상의 영향)

  • Cho, Seong-Ho;Park, Gu-Jeong;Khil, Tae-Ock;Yoon, Young-Bin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.4
    • /
    • pp.348-353
    • /
    • 2011
  • Characteristics of cryogenic single jet flow were investigated. Liquid nitrogen was injected into a high-pressure chamber and formed single jet. Ambient condition around jet was changed from subcritical to superctirical condition of nitrogen. Injector geometries also were changed. A shape of the jet and core diameter were measured by flow visualization technique, and core spreading angle was calculated. Flow instability was found at atmospheric pressure condition. As ambient pressure increased, core spreading angle was increased and maintained after certain pressure.

Atomizing Characteristics of Coaxial Porous Injectors (다공성재를 이용한 동축형 분사기의 미립화특성)

  • Kim, Do-Hun;Shin, Jeung-Hwan;Lee, In-Chul;Koo, Ja-Ye
    • Journal of ILASS-Korea
    • /
    • v.17 no.1
    • /
    • pp.35-44
    • /
    • 2012
  • To improve the mixing and atomizing performance at the center region of the conventional coaxial shear injector spray, the concept of a coaxial porous injector was invented. This novel injection concept for liquid rocket engines utilizes the Taylor-Culick flow in the cylindrical porous tube. The 2-dimensional injector, which can be converted in three injection configurations, was fabricated, and several cold flow tests using water-air simulant propellant was performed. The hydraulic characteristics and the effects of a gas flow condition on the spray pattern and the Sauter mean diameter (SMD) was analyzed for each configuration. The atomizing mechanism of coaxial porous injector was different with the coaxial shear injector, and it was explained by the momentum of the gas jet, which is injected normally against the center liquid column, and by the secondary disintegration at the wavy interface of liquid jet, which was generated at the recessed region. The SMD of 2D coaxial porous injector, which has higher gas momentum, was measured and it shows better atomizing performance at the center and outer side of spray than the 2D coaxial shear injector.