• Title/Summary/Keyword: Jet diffusion flames

Search Result 75, Processing Time 0.024 seconds

Investigation of liftoff mechanisms in hydrogen turbulent non-premixed jet flames (수소 난류확산화염에서의 부상 메커니즘에 대한 연구)

  • Oh, Jeong-Seog;Kim, Mun-Ki;Choi, Yeong-Il;Yoon, Young-Bin
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2006.12a
    • /
    • pp.135-140
    • /
    • 2006
  • The stabilization mechanism of turbulent, lifted jet flames in a non-premixed condition has been studied experimentally. The objectives are to explain the phenomenon of a liftoff height decreasing as increasing fuel velocity and to reveal the mechanisms of flame stability Hydrogen was varied from 100 to 300 m/s and a coaxial air was fixed at 16 m/s with a coflow air less than 0.1 m/s. The technique of PIV and OH PLIF was used simultaneously with CCD and ICCD cameras. It was found that the liftoff height of the jet decreased with an increased fuel jet exit velocity. The leading edge at the flame base was moving along the stoichiometric line. Finally we confirmed that the stabilization of lifted hydrogen diffusion flames is related with a turbulent intensity, which means combustion is occurred where the local flow velocity is equal to the turbulent flame propagation velocity.

  • PDF

Liftoff Mechanisms in Hydrogen Turbulent Non-premixed Jet Flames (수소 난류확산화염에서의 부상 메커니즘에 대한 연구)

  • Oh, Jeong-Seog;Kim, Mun-Ki;Choi, Yeong-Il;Yoon, Young-Bin
    • Journal of the Korean Society of Combustion
    • /
    • v.12 no.2
    • /
    • pp.26-33
    • /
    • 2007
  • To reveal the newly found liftoff height behavior of hydrogen jet, we have experimentally studied the stabilization mechanism of turbulent, lifted jet flames in a non-premixed condition. The objectives of the present research are to report the phenomenon of a liftoff height decreasing as increasing fuel velocity, to analyse the flame structure and behavior of the lifted jet, and to explain the mechanisms of flame stability in hydrogen turbulent non-premixed jet flames. The velocity of hydrogen was varied from 100 to 300m/s and a coaxial air velocity was fixed at 16m/s with a coflow air less than 0.1m/s. For the simultaneous measurement of velocity field and reaction zone, PIV and OH PLIF technique was used with two Nd:Yag lasers and CCD cameras. As results, it has been found that the stabilization of lifted hydrogen diffusion flames is related with a turbulent intensity, which means that combustion occurs at the point where the local flow velocity is balanced with the turbulent flame propagation velocity.

  • PDF

Flickering Frequency and Pollutants Formation in Microwave Induced Diffusion Flames (마이크로파가 인가된 화염에서의 주파수 특성과 오염물질 생성)

  • Jeon, Young Hoon;Lee, Eui Ju
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.3
    • /
    • pp.22-27
    • /
    • 2016
  • The use of electromagnetic wave has been interested in various energy industry because it enhances a flame stability and provides higher safety environments. However it might increase the pollutant emissions such as NOx and soot, and have harmful influence on human and environments. Therefore, it is very important to understand interaction mechanism between flame and electromagnetic wave from environmental point of view. In this study, an experiment was performed with jet diffusion flames induced by electromagnetic wave. Microwave was used as representative electromagnetic wave and a flickering flame was introduced to simulate the more similar combustion condition to industry. The results show that the induced microwave enhances the flame stability and blowout limit. The unstable lifted flickering flames under low fuel/oxidizer velocity is changed to stable attached flames or lift-off flames when microwave applied to the flames, which results from the abundance of radical pool. However, NOx emission was increased monotonically with increasing the microwave power as microwave power increased up to 1.0 kW. The effects might be attributed to the heating of combustion field and thermal NOx mechanism will be prevailed. Soot particle was examined at the post flame region by TEM grid. The morphology of soot particle sampled in the microwave induced flames was similar to the incipient soot that is not agglomerated and contain a lots of liquid phase hydrocarbon such as PAH, which soot particle formed near reaction zone is oxidized on the extended yellow flame region and hence only unburned young particles are emitted on the post flame region.

Characteristics of the electrospraying combustion using grooved nozzle (홈노즐을 이용한 정전분무 확산 연소 특성에 관한 연구)

  • Kim, Woo-Jin;Kim, Kyoung-Tae;Kim, Sang-Soo
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2366-2371
    • /
    • 2007
  • Spray combustion characteristics of a conducting fuel electrospray have been studied for clean combustion technology. The multiplexing system which can retain the characteristics of the cone-jet mode is inevitable for the electrospray application. Charged micro droplets can be obtained in almost uniform size during operating the electrospray in the cone-jet mode. This experiment device set up the multiplexed grooved nozzle system with the extractor. Using the grooved nozzle, the stable cone-jet mode can be achieved at the each groove in the grooved mode. This electrospray system was applied to the diffusion combustion. It is the first step to discover the diffusion combustion characteristics of the electrospray. In case of the single grooved nozzle electrospray, the diffusion flames are occurred at each jet of grooved mode and they are quite stable. The exhaust gas analysis was indicated that there is the critical point which can make very stable diffusion combustion.

  • PDF

An Experimental Study on the Effect of Fuel Dilution on the Propagation Velocity of Triple Flames in a Diverging Channel (연료희석이단면확대채널에형성된삼지화염의전파속도에미치는영향에관한실험적연구)

  • Seo, Jeong-Il;Shin, Hyun-Dong;Kim, Nam-Il
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.13-18
    • /
    • 2007
  • When triple flames propagated in a diverging channel, the effects of fuel dilution on the lift-off characteristics of triple flames were investigated. A multi-slot burner was used to stabilize the lift-off flame especially at weak fuel concentration gradients. It was reported that there is a maximum propagation velocity at a critical concentration gradient in an open jet regardless of fuel dilution. The enhancement of a diffusion flame affected to increase the propagation velocity around critical concentration gradients. However, the influence of a confined channel on the structure of triple flames according to fuel dilution needs to be investigated compared with an open jet case. This study aimed to examine the effect of a confined channel on the structure and the propagation velocity of the triple flames according to fuel dilution. Lift-off height and propagation velocity of triple flames were investigated by employing three kinds of fuel compositions diluted by nitrogen (0%, 25%, 50% $N_2$), Fuel dilution reduced the propagation velocity of triple flame in a confined channel mainly due to the decrease of flame temperature in premixed branch. Despite the difference in fuel dilution, the propagation velocity has a maximum value at a specific fuel concentration gradient even though the critical concentration gradient increases with fuel dilution. And the critical concentration gradient in a confined channel is larger than that in an open jet due to enhancement of convective diffusion.

  • PDF

Characteristics of methane non-premixed multiple jet flames (메탄 비예혼합 상호작용 화염의 특성)

  • Lee, Byeong-Jun;Kim, Jin-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1365-1370
    • /
    • 2004
  • It has been reported that if eight small nozzles are arranged along the circle of 40 $^{\sim}$ 72 times the diameter of single nozzle, the propane non-premixed flames are not extinguished even in 200m/s, In this research, experiments were extended to the methane flame. Nine nozzles were used- eight was evenly located along the perimeter of the imaginary circle and one at the geometric center. The space between nozzles, s, the exit velocity and the role of the jet from the center nozzle were considered. On the contrary to the propane non-premixed case, the maximum blowout velocity for the methane diffusion flame was achieved when small amount of fuel is supplied through the center nozzle and s/d equals around 21. In the laminar region, the flame attached at the center nozzle anchored the outer lifted flames.

  • PDF

Characteristics of Methane Non-Premixed Multiple Jet Flames (메탄 비예혼합 상호작용 화염의 특성)

  • Kim Jin Hyun;Lee Byeong-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.3 s.234
    • /
    • pp.349-355
    • /
    • 2005
  • It has been reported that propane non-premixed interacting flames are not extinguished even in 210m/s if eight small nozzles are arranged along the imaginary circle of 40 ~ 72 times the diameter of single nozzle. In this research, experiments were extended to the methane flame. Nine nozzles were used- eight was evenly located along the perimeter of the imaginary circle and one at the geometric center. The space between nozzles, s, the exit velocity and the role of the jet from the center nozzle were considered. On the contrary to the propane non-premixed flame, small amount of fuel fed through the center nozzle makes the methane diffusion flame stable even at the choking conditions. In the laminar region, the flame at the center nozzle anchored the outer lifted flames.

An Experimental Study on the Flame Appearance and Heat Transfer Characteristics of Acoustically Excited Impinging Inverse Diffusion Flames (음향 가진된 충돌 역 확산화염의 화염형상과 열전달 특성에 관한 실험적 연구)

  • Kang, Ki-Joong;Lee, Kee-Man
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.10
    • /
    • pp.3647-3653
    • /
    • 2010
  • An experimental investigation of the flame appearance and heat transfer characteristics in both unexcited and excited impinging inverse diffusion flames with a loud speaker has been performed. The flame is found to become broader and shorter (in length) with acoustic excitation. The heat flux at the stagnation point is increased with the acoustic excitation. The acoustic excitation is more effective in lean conditions than in rich conditions. The reasons for these behaviors are that acoustic excitation improves the entrainment of surrounding air into the jet. From this study, it is found that the maximum increase of 57% in the total heat flux is obtained at the stagnation point of $\Phi$=0.8. Therefore, it is ascertained that the excitation combustion can be adopted with effective instruments as a method for improving heat transfer in impinging jet flames.

Characteristics of the Electrospraying Combustion Using Grooved Nozzle (홈노즐을 이용한 정전분무 확산 연소 시스템 개발 및 특성 연구)

  • Kim, Woo-Jin;Kim, Kyoung-Tae;Kim, Sang-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.12
    • /
    • pp.979-985
    • /
    • 2007
  • Spray combustion characteristics of the conducting fuel electrospray has been studied for clean combustion technology. The electrospraying multiplexed system which can maintain the characteristics of the cone-jet mode is able to obtain charged micro droplets with high flow rate. In addition, they have monodisperse distribution during operating the electrospray in the cone-jet mode. The multiplexed grooved nozzle system with the extractor was applied to this experimental device set up. The stable grooved mode can be generated by the grooved nozzle and this electrospray system was applied to the diffusion combustion. It is the first step to discover the diffusion combustion characteristics of the electrospray, In case of the single grooved nozzle electrospray the diffusion flames are occurred at each Jet of grooved mode and they are quite stable. The exhaust gas analysis was indicated that there is the critical point which can make very stable diffusion combustion

Study of Hydrogen Turbulent Non-premixed Flame Stabilization in Coaxial Air Flow (동축공기 수소 난류확산화염에서의 화염안정성에 대한 실험적 연구)

  • Oh, Jeong-Seog;Kim, Mun-Ki;Choi, Yeong-Il;Yoon, Young-Bin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.3
    • /
    • pp.190-197
    • /
    • 2008
  • It was experimentally studied that the stabilization mechanism of turbulent, lifted jet flames in a non-premixed condition to reveal the newly found liftoff height behavior of hydrogen jet. The objectives are to report the phenomenon of a liftoff height decreasing as increasing fuel velocity, to analyse the flame structure and behavior of the lifted jet, and to explain the mechanisms of flame stability in hydrogen turbulent non-premixed jet flames. The hydrogen jet velocity was changed from 100 to 300m/s and a coaxial air velocity was fixed at 16m/s with a coflow air less than 0.1m/s. For the simultaneous measurement of velocity field and reaction zone, PIV and OH PLIF technique was used with two Nd:Yag lasers and CCD cameras. As a result, it was found that the stabilization of lifted hydrogen diffusion flames is correlated with a turbulent intensity and Karlovitz number.