• Title/Summary/Keyword: Jet breakup

Search Result 95, Processing Time 0.024 seconds

The Effect of Cross-flow on Liquid Atomization (횡단유동이 액체 미립화에 미치는 영향)

  • Kim, Jong-Hyun;Cho, Woo-Jin;Lee, In-Chul;Lee, Bong-Soo;Koo, Ja-Ye
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.2
    • /
    • pp.87-92
    • /
    • 2008
  • The breakup processes and spray plume characteristics of liquid jets injected in subsonic air cross-flows were experimentally studied. The behaviors of column, penetration, breakup of plain liquid jet and droplet sizes, velocities have been studied in non-swirling cross-flow of air. Nozzle has a 1.0 mm diameter and Lid ratio=5. Experimental results indicate that the breakup point is delayed by increasing air momentum, the penetration decreases by increasing Weber number and the split angle is increased by increasing air velocity or decreasing injection velocity. SMD increases according as increasing height or decreases in accordance with increasing air velocity. This phenomenon is related to the momentum exchange between column waves and cross-flow stream. Droplet vector velocities were varied from 11.5 to 33 m/s. A higher-velocity region can be identified in down edge region at Z/d=40, 70 and 100. Lower-velocity region were observed on bottom position of the spray plume.

A Proposal for Diesel Spray Model Using a TAB Breakup Model and Discrete Vortex Method

  • Yeom, Jeong-Kuk;Lee, Myung-Jun;Chung, Sung-Sik;Ha, Jong-Yul;Jiro Senda;Hajime Fujimoto
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.532-548
    • /
    • 2002
  • A hybrid model consisting of a modified TAB (Taylor Analogy Breakup) model and DVM (Discrete Vortex Method) is proposed for numerical analysis of the evaporating spray phenomena in diesel engines. The simulation process of the hybrid model is divided into three steps. First, the droplet breakup of injected fuel is analyzed by using the modified TAB model. Second, spray evaporation is calculated based on the theory of Siebers'liquid length. The liquid length analysis of injected fuel is used to integrate the modified TAB model and DVM. Lastly, both ambient gas flow and inner vortex flow of injected fuel are analyzed by using DVM. An experiment with an evaporative free spray at the early stage of its injection was conducted under in-cylinder like conditions to examine an accuracy of the present hybrid model. The calculated results of the gas jet flow by DVM agree well with the experimental results. The calculated and experimental results all confirm that the ambient gas flow dominates the downstream diesel spray flow.

Experimental Study on the Spray Characteristics of Aerated Impinging Jets (기체주입 충돌제트의 분무특성에 관한 실험적 연구)

  • Lee, Keunseok;Yoon, Youngbin;Ahn, Kyubok
    • Journal of ILASS-Korea
    • /
    • v.24 no.4
    • /
    • pp.185-193
    • /
    • 2019
  • The effervescent atomizer is one of twin-fluid atomizers that aeration gas enters into bulk liquid and two-phase flow is formed in the mixing section. The effervescent atomizer requires low injection pressure and small amount of aeration gas, as compared to other twin-fluid atomizers. In this study, cold flow test was conducted to investigate the spray characteristics of aerated impinging jets. The present effervescent impinging atomizers were composed of the aerator device and like-on-like doublet impinging atomizer which had different impinging angles. To analyze the spray characteristics such as breakup length and droplet size distribution, the image processing technique was adopted by using instantaneous images at each flow condition. Non-dimensional parameters, induced by the homogeneous flow model, were used to predict the breakup length. The breakup length was decreased with the mixture Reynolds number and impinging angle increasing. The result of droplets showed that the size distribution was axisymmetric about the center of the injector and their diameter tended to decrease with increasing GLR.

Analysis of Colloid Thrusters for Nano-satellite Propulsion (나노인공위성 추진용 콜로이드 추력기 해석)

  • Park, Kun-Joong;Kim, Ho-Young;Song, Seung-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.175-178
    • /
    • 2007
  • The mode transition from cone-jet to dripping in colloid thruster operation has been analytically investigated. The transition has been predicted by the dynamic behavior of a liquid drop at the tip of the cone-jet. Conservation laws are applied to determine the upward motion of the drop, and an instability model of electrified jets is used to determine the jet breakup. Finally, for the first time, the analysis enables prediction of the transition in terms of the Weber number and electric Bond number. The predictions are in good agreement with experimental data.

  • PDF

Analysis of the Spray Distribution Characterization of Impinging Jet Injectors for Liquid Rockets Using PLIF Technique (PLIF 기법을 이용한 액체로켓용 충돌분사 인젝터의 분무분포 특성 해석)

  • 정기훈;윤영빈;황상순
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.1
    • /
    • pp.36-45
    • /
    • 2000
  • Most researches for impinging jet spray have been focused on under-standing the breakup mechanism of a liquid sheet formed by the collision of jets and modeling the spray breakup using experimental data. For this reason, there have been few studies on the characteristics of the spatial spray distribution which affects significantly the combustion efficiency. Hence, we measured the radial distribution of fuel massflux using a like-doublet type injector. Instead of PDPA(Phase Doppler Particle Analyzer) which has been used only for the point measurement of the drop size of spray, PLIF(Planar Laser Induced Fluorescence) technique was developed lot the 2-D measurement of the massflux distribution of spray Indirect photography technique was also used to verify PLIF data.

  • PDF

Ex-vessel Steam Explosion Analysis for Pressurized Water Reactor and Boiling Water Reactor

  • Leskovar, Matjaz;Ursic, Mitja
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.72-86
    • /
    • 2016
  • A steam explosion may occur during a severe accident, when the molten core comes into contact with water. The pressurized water reactor and boiling water reactor ex-vessel steam explosion study, which was carried out with the multicomponent three-dimensional Eulerian fuel-coolant interaction code under the conditions of the Organisation for Economic Co-operation and Development (OECD) Steam Explosion Resolution for Nuclear Applications project reactor exercise, is presented and discussed. In reactor calculations, the largest uncertainties in the prediction of the steam explosion strength are expected to be caused by the large uncertainties related to the jet breakup. To obtain some insight into these uncertainties, premixing simulations were performed with both available jet breakup models, i.e., the global and the local models. The simulations revealed that weaker explosions are predicted by the local model, compared to the global model, due to the predicted smaller melt droplet size, resulting in increased melt solidification and increased void buildup, both reducing the explosion strength. Despite the lower active melt mass predicted for the pressurized water reactor case, pressure loads at the cavity walls are typically higher than that for the boiling water reactor case. This is because of the significantly larger boiling water reactor cavity, where the explosion pressure wave originating from the premixture in the center of the cavity has already been significantly weakened on reaching the distant cavity wall.

Development of GPU-Paralleled multi-resolution techniques for Lagrangian-based CFD code in nuclear thermal-hydraulics and safety

  • Do Hyun Kim;Yelyn Ahn;Eung Soo Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2498-2515
    • /
    • 2024
  • In this study, we propose a fully parallelized adaptive particle refinement (APR) algorithm for smoothed particle hydrodynamics (SPH) to construct a stable and efficient multi-resolution computing system for nuclear safety analysis. The APR technique, widely employed by SPH research groups to adjust local particle resolutions, currently operates on a serialized algorithm. However, this serialized approach diminishes the computational efficiency of the system, negating the advantages of acceleration achieved through high-performance computing devices. To address this drawback, we propose a fully parallelized APR algorithm designed to enhance both efficiency and computational accuracy, facilitated by a new adaptive smoothing length model. For model validation, we simulated both hydrostatic and hydrodynamic benchmark cases in 2D and 3D environments. The results demonstrate improved computational efficiency compared to the conventional SPH method and APR with a serialized algorithm, and the model's accuracy was confirmed, revealing favorable outcomes near the resolution interface. Through the analysis of jet breakup, we verified the performance and accuracy of the model, emphasizing its applicability in practical nuclear safety analysis.

Effects of Orifice Internal Flow on Transverse Injection into Subsonic Crossflows: Cavitation and Hydraulic Flip (오리피스 내부 유동조건에 따른 수직분사제트의 분열특성에 대한 연구)

  • 안규복;김정훈;윤영빈
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.72-75
    • /
    • 2003
  • In this research, we focused on the effects of the orifice internal flow such as cavitation and hydraulic flip. The breakup characteristics such as the breakup length and trajectory were measured by changing the orifice diameter (d), the orifice length/orifice diameter (L/d), the injection pressure and the shapes (sharp and round) of orifice entrance to provide a lot of conditions of the orifice internal flow. It is found that cavitation bubbles that occur inside the sharp-edged orifice make the liquid jet ejecting from the orifice turbulent. In the orifices (L/d = 5), the hydraulic flip phenomenon is shown when the injection pressure is high. In case cavitation occurs it breaks up more earlier than that in case of non-cavitation. In case hydraulic flip occurs, since the area of the liquid jet becomes small, the breakup length is also small as that in case of cavitation. But the liquid column trajectories have a similar tendency irrespective of cavitation.

  • PDF