• Title/Summary/Keyword: Jet Velocity

Search Result 836, Processing Time 0.023 seconds

Effects of Silencer Design on the Performance of Jet-fan (제트홴 소음기 형상이 성능에 미치는 영향)

  • Oh, In-Gyu;Choi, Young-Seok;Kim, Joon-Hyung;Yang, Sang-Ho;Kwon, Oh-Myoung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.6
    • /
    • pp.25-29
    • /
    • 2010
  • In this paper, a numerical study has been carried out to investigate the influence of silencer design variables on the performance of a jet fan. In order to achieve an optimum jet fan design and to explain the interactions between the different geometric configurations in the jet fan, three-dimensional computational fluid dynamics and the Design of Experiments method have been applied. Two geometric variables, i.e., cap size and silencer length, were employed to improve the performance of the jet fan. The objective functions of the jet fan are defined as the effective velocity and total efficiency at the operating condition. Based on the results of computational analyses, the flow characteristics were discussed. The effect of silencer with a specific roughness on the performance was also discussed.

Study of Hydrogen Turbulent Non-premixed Flame Stabilization in Coaxial Air Flow (동축공기 수소 난류확산화염에서의 화염안정성에 대한 실험적 연구)

  • Oh, Jeong-Seog;Kim, Mun-Ki;Choi, Yeong-Il;Yoon, Young-Bin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.3
    • /
    • pp.190-197
    • /
    • 2008
  • It was experimentally studied that the stabilization mechanism of turbulent, lifted jet flames in a non-premixed condition to reveal the newly found liftoff height behavior of hydrogen jet. The objectives are to report the phenomenon of a liftoff height decreasing as increasing fuel velocity, to analyse the flame structure and behavior of the lifted jet, and to explain the mechanisms of flame stability in hydrogen turbulent non-premixed jet flames. The hydrogen jet velocity was changed from 100 to 300m/s and a coaxial air velocity was fixed at 16m/s with a coflow air less than 0.1m/s. For the simultaneous measurement of velocity field and reaction zone, PIV and OH PLIF technique was used with two Nd:Yag lasers and CCD cameras. As a result, it was found that the stabilization of lifted hydrogen diffusion flames is correlated with a turbulent intensity and Karlovitz number.

Analysis of Particle Motion Impinging on a Flat Plate (평판에 충돌하는 미립자의 유동분석)

  • Kim, Jin;Kim, Byung-Moon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.9-16
    • /
    • 2002
  • The particles velocity in the instantaneous flow field and velocity change of particles along the jet centerline for various particle diameter in a circular turbulent impingement jet are investigated by using particle image velocimetry(PIV) and an equation of particle motion simplified by terms of inertia forces, drag and gravitational force. The jet Reynolds number was 3300 and 8700, and glass beads of 30,58 and 100$\mu$m in diameter were used. The PIV results show that the direction and size of velocity depends not only on the number density of particle but also on the particle momentum. The results obtained form calculation suggest that the particle velocity near the first impingement region deviated from local air velocity, which accords well with the PIV results. The rebound height of particle increase with the particle diameter. In the second-impingement, particle velocities increased sluggishly with Re=3300 but particle velocities uniformed with Re=8700 in stagnation region.

The Effect of Nozzle Collar on Single Phase and Boiling Heat Transfer by Planar Impinging Jet (평면 충돌제트에서 노즐 깃이 단상 및 비등 열전달에 미치는 영향)

  • Shin, Chang-Hwan;Yim, Seong-Hwan;Wu, Seong-Je;Cho, Hyung-Hee
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1452-1457
    • /
    • 2004
  • The water jet impingement cooling is one of the techniques to remove heat from high heat flux equipments. We investigate the local heat transfer of the confined water impinging jet and the effect of nozzle collar to enhance the heat transfer in the free surface jet and submerged jet. Boiling is initiated from the furthest downstream and the wall temperature increase is reduced with developing boiling, forming the flat temperature distributions. The reduction in the nozzle-to-surface distance for $H/W{\leq}1$ causes the significant increases and distribution changes in heat transfer. Developed boiling reduces the differences in heat transfer for various conditions. The nozzle collar is employed at the nozzle exit. The distances from heated surface to guide plate, $H_c$ are 0.25W, 0.5W and 1.0W. The liquid film thickness is reduced and the velocity of wall jet increase as decreased spacing of collar to heated surface. Heat transfer is enhanced for region from the stagnation to $x/W{\sim}8$ in the free surface jet and to $x/W{\sim}5$ in the submerged jet. For nucleate boiling region of further downstream, the heat transfer by the nozzle collar is decreased in submerged jet compare with higher velocity condition. It is because the increased velocity by collar is de-accelerated at downstream.

  • PDF

Stereoscopic PIV Measurement on Turbulent Flows in a Waterjet Intake Duct (스테레오 PIV를 이용한 워터젯 흡입덕트 내부의 난류유동측정)

  • Kwon, Seong-Hun;Yoon, Sang-Youl;Chun, Ho-Hwan;Kim, Kyung-Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.5
    • /
    • pp.612-618
    • /
    • 2004
  • Stereoscopic PIV measurements were made in the wind tunnel with the actual size waterjet model. The main wind tunnel provides the vehicle velocity while the secondary wind tunnel adjusts the jet issuing velocity. Experiments were performed at the range of jet to vehicle velocity ratio (JVR), 3.75 to 8.0 and the Reynolds number of 220,000 based on the jet velocity and the hydraulic diameter of the waterjet intake duct. Wall pressure distributions were measured for various JVRs. Three dimensional velocity fields were obtained at the inlet and outlet of the intake duct. It is found that severe acceleration is occurred at the lip region while deceleration is noticeable at the ramp side. The detailed three dimensional velocity fields can be used as the accurate velocity input for the CFD simulation. It is interesting to note that there are many different types of vortices in the instantaneous velocity field. It can be considered that those vortices are generated by the corner of rectangular section of the intake and Gortler vortices due to the curved wall. However, typical secondary flow with a pair of counter rotating vortex pair is clearly seen in the ensemble averaged velocity field.

Three Dimensional Topology of Vortical Structure of a Round Jet in Cross Flow (횡단류 제트 와류구조의 3차원 토폴로지)

  • Shin, Dae Sig;Kim, Kyung Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.7
    • /
    • pp.918-927
    • /
    • 1999
  • In the fully developed internal flow fields, there are complex transition flows caused by interaction of the cross flow and jet when jet is Injected Into the flow. These interactions are studied by means of the flow visualization methods. An instantaneous laser tomographic method is used to reveal the physical mechanism and the structure of vortices formation in the branch pipe flow. The velocity range of cross flow of the pipe is 0.7m/s and the corresponding Reynolds number $R_{cf}$, based on the duct height is $5.6{\times}10^3$, diameter/height ratios(d/H) 0.14 and velocity ratios 3.0. Oil mist with the size of $10{\mu}m$ diameter is used for the scattering particle. The instantaneous topological features of the vortex ring roll-up of the jet shear layer and characteristics of this flow are studied in detail by performing flow visualization in rectangular duct flow. It is found that the formation and roll-up of ring vortices is a periodic phenomenon. The detailed topology of the vortices in the near field of a cross -flow jet and the mechanism associated with them give enforced hints of vortex breakdown within the vortex system due to the interaction of the jet and the cross-flow.

An Experimental Study on Heat Transfer and Fluid Flow on the Semi-Circular Concave Surface Cooled by Jet Impingement (제트충돌냉각되는 반원 오목면에서 열전달 및 유체유동에 관한 실험적 연구)

  • Yu, Han-Seong;Yang, Geun-Yeong;Lee, Jun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.9
    • /
    • pp.2991-3006
    • /
    • 1996
  • An experimental study of jet flow and heat transfer has been carried out for the jet impingement cooling on a semi-circular concave surface. For the jet impingement on the concave surface, three different regions-free jet region, stagnation region, and wall jet flow region-exist, and the distributions of mean velocity and fluctuating velocity for each region have been measured by Laser Doppler Velocimeter. Of particular interests are the effects of jet Reynolds number, the distance between the nozzle exit and cooling surface apex, and the distance from the stagnation point in the circumferential direction. The resulting characteristics of heat transfer at the stagnation point and the variation of heat transfer along the circumferential direction including the existence of secondary peak have been explained in conjunction with measured impinge jet flow.

The Flow Field Structure of Jet-in-Cross Flow through the Perforated Damage Hole (관통 손상 구멍으로부터의 제트-교차 흐름의 유동장 구조)

  • Lee, Ki-Young
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.551-559
    • /
    • 2014
  • The influence of the battle damage hole on the velocity and vorticity flow field have been studied by using particle image velocimetry. Time averaged velocity and vorticity vector fields in the vicinity of jet are presented. The perforated damage hole on a wing created from a hit by anti-air artillery was modeled as a 10% chord size hole which positioned at quarter chord. At low angles of attack, the vorticity in the forward side of the jet is cancelled due to mixing with the wing surface boundary layer. Stretching of vorticity in the backside of the jet generates a semi-cylindrical vortical layer that enclosing a domain with slow moving reverse flow. Conversely, at higher the angles of attack, the jet vorticity advected away from the wing surface and remains mostly confined to the jet. The mean flow behind the jet has a wake-like structure.

Numerical Study for Spray Characteristics of Liquid Jet in Cross Flow with Variation of Injection Angle (분사각 변화에 따른 횡단류에 분사되는 액체제트의 분무특성에 대한 수치적 연구)

  • Lee Kwan-Hyung;Ko Jung-Bin;Koo Ja-Ye
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.2 s.245
    • /
    • pp.161-169
    • /
    • 2006
  • The spray characteristics of liquid jet in cross flow with variation of injection angle are numerically studied. Numerical analysis was carried out using KIVA code, which was modified to be suitable for simulating liquid jet ejected into cross flow. Wave model and Kelvin-Helmholtz(KH)/Rayleigh-Taylor(RT) hybrid model were used for the purpose of analyzing liquid column, ligament, and the breakup of droplet. Numerical results were compared with experimental data in order to verify the reliability of the physical model. Liquid jet penetration length, volume flux, droplet velocity profile and SMD were obtained. Penetration length increases as flow velocity decreases and injection velocity increases. From the bottom wall, the SMD increases as vertical distance increases. Also the SMD decreases as injection angle increases.

Flow Characteristics of a Jet Pump by the Angle Variation of a Suction Pipe (분사펌프의 흡입관 각도 변화에 따른 유동특성)

  • Kim, Noh Hyeong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.6
    • /
    • pp.61-67
    • /
    • 2016
  • In this study, STAR-CD-based CFD techniques was used to analyze velocity distribution and pressure distribution according to the variation of angels at $45^{\circ}$, $60^{\circ}$ and $90^{\circ}$ a suction pipe when inlet velocity condition is 1 m/s. SIMPLE maritime law used for analytical algorithm and the results of CFD analysis evaluated by particle image velocimetry (PIV). The results of CFD analysis in this study have revealed that the optimal angle of a suction pipe for a jet pump is $90^{\circ}$ and the PIV test has showed the same results. Therefore, it is thought that when CFD is used to analyze the flow characteristics of a jet pump it would be possible to produce optimal designs of its devices.