• Title/Summary/Keyword: Jet Penetration

Search Result 127, Processing Time 0.029 seconds

Development of Hybrid Model for Simulating of Diesel Spary Dynamics (디젤분무의 모사를 위한 혼합 모델의 개발)

  • 김정일;노수영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.1
    • /
    • pp.8-19
    • /
    • 2001
  • A number of atomization and droplet breakup models have been developed and used to predict the diesel spray characteristic. Most of these models could not provide reasonable computational result of the diesel spray characteristic because they have only considered the primary breakup. A hybrid model is, therefore, required to develop by considering the primary and secondary breakup of liquid jet. according to this approach, wave breakup(WB) model was used compute the primary breakup of the liquid jet and droplet deformation and breakup(DDB) model was used for the secondary breakup of droplet. Development of hybrid model by using KIVA-II code was performed by comparing with the experimental data of spray tip penetration and SMD from the literature. A hybrid model developed in this study could provide the good agreement with the experimental data of spray tip penetration. The prediction results of SMD were in good agreement between 0.5 and 1.0 ms after the start of injection. Numerical results obtained by the present hybrid model have the good agreement with the experimental data with the breakup time constant in WB model of 30, and DDB model constant Ck of 1.0 when the droplet becomes less than 95% of maximum droplet diameter injected.

  • PDF

Mixing and Penetration Studies of Transverse Jet into a Supersonic Crossflow (초음속 유동 내 공동을 이용한 수직 분사 혼합 및 연료 침투거리에 관한 연구)

  • Kim, Chae-Hyoung;Jeong, Eun-Ju;Jeung, In-Seuck;Kang, Sang-Hun;Yang, Soo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.2
    • /
    • pp.24-32
    • /
    • 2008
  • A non-reacting experimental study on a normal injection into a Mach 1.92 crossflow which flows over various geometries(flat plate, small cavity, large cavity) was carried out to investigate the effect of the momentum flux ratio(J). The aft ramp of the cavity advances the increase of the penetration height and the strong two-dimensional shock from recompression region mainly affects the shock structure and mixing layer at the downstream flow. As flow runs downward, the transverse penetration height increases with increasing J(J = 0.9, 1.7, 3.4). However, above some critical ratio, jet penetration height growth with increasing J is not appeared in flow-field. Large scale cavity has a good mixing efficiency but it increases the drag loss in the combustor.

A Study on High Velocity Impact Phenomena by a Long Rod Penetrator (긴 관통자에 의한 고속충돌현상 연구)

  • 이창현;최준홍;홍성인
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.573-583
    • /
    • 1994
  • In this study, the shock characteristics for high velocity impact phenomena during the initial shock state by the long rod penetrator are calculated. From these results we re-analyze the one-dimensional hydrodynamic penetration theory by introducing the effective area ratio calculated from the mushroomed strain which is dependent on impact velocity. Calculated penetration depth and mushroomed strain show good agreement with high velocity impact experimental data. In addition we visualize the shock wave propagation in a transparent acryle block.

Performance Characteristics of a High-Speed Jet Produced by a Pulsed-Arc Spark Jet Plasma Actuator (펄스 아크 스파크 제트 플라즈마 구동기에 의해 발생된 고속 제트의 효율적 운전 성능 특성에 관한 연구)

  • Kim, Young Sun;Shin, Jichul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.11
    • /
    • pp.907-913
    • /
    • 2017
  • The performance of a spark jet driven by pulsed-arc plasma was investigated experimentally for various energy input. A high-speed jet (about 330 m/s) was obtained by rapid gas heating produced by 37 mJ of deposited energy per pulse. The peak velocity and penetration distance of the jet were proportional to the deposited power and the deposited energy per pulse, respectively. A smaller orifice diameter produces a higher velocity jet at lower energy levels. For the same deposited energy, higher-current pulses produce a higher jet velocity than higher-pulse-width pulses. A total deposited energy of about 10 mJ per pulse with a pulse duration of about $10{\mu}s$ was found to be the optimum for energy- efficient operation.

Evaluation of the Wear Resistance of PVD Coatings on Drills by Using a Slurry Jet Impact Test

  • Iwai, Y.;Ueno, Y.;Suehiro, T.;Honda, T.;Hogmark, S.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.141-142
    • /
    • 2002
  • In this paper, we propose a slurry jet (water containing $1\;{\mu}m$ alumina particles) impact test in order to quickly evaluate the wear properties of physical vapor deposited (PVD) coatings on commercial cutting tools. Linear wear was obtained for bothe coating and substrate material, and the penetration through the coating into the substrate was signified by a sharp increase in slope of the wear versus time curve. The PVD coatings deposited on the tools showed the same wear rates as those on reference plate specimens produced by the same coating methods. We conclude that our proposed evaluation technique for coatings is considerably useful as a screening test when evaluating coated tools like twist drills, taps, end mills, gear hobs, etc.

  • PDF

The Research on Development of Flexible Linear Shaped Charge (유연성 선형 성형작약 개발에 관한 연구)

  • Park, Byung-Chan;Chang, Il-Ho;Lee, Woo-Jin;Jeon, Jin-Cheol
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.378-387
    • /
    • 2009
  • The shaped charge consists of the cast or pressed explosive and the metal liner. The pressure formed in detonation wave is so high that the liner is collapsed and the jet of high temperature, pressure and velocity is produced. The jet penetrates the target. In this paper, the simulation for optimization of flexible linear shaped charge(FLSC) was carried out by AUTODYNE program. Based on the results of simulation, we made a prototype of FLSC and evaluated penetration performance, flexibility and its application. The test result of prototype was compared with that of simulation.

UNSTEADY THREE-DIMENSIONAL ANALYSIS OF TRANSVERSE FUEL INJECTION INTO A SUPERSONIC CROSSFLOW USING DETACHED EDDY SIMULATION (DES를 이용한 초음속 유동내 수직 연료분사 유동의 비정상 3차원 해석)

  • Won, S.H.;Moon, S.Y.;Jeung, I.S;Choi, J.Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.97-103
    • /
    • 2008
  • Unsteady three-dimensional flowfields generated by transverse fuel injection into a supersonic mainstream are simulated with a DES turbulence model. Comparisons are made with experimental results in term of the temporal eddy position and eddy formation frequency. The vorticity field around the jet exit is also analyzed to understand the formation mechanism of the jet vortical structures. Results indicate that the DES model correctly predicts the convection characteristics of the large scale eddies. However, it is also observed that the numerical results slightly overpredict the eddy formation frequency. The jet vortical structures are developed from the competing vortices in the recirculation region of upstream boundary.

  • PDF

Slurry Wear Test on the Liquid Jet (분류에 의한 SLURRY 마멸)

  • 우창기;조견식
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.5
    • /
    • pp.88-92
    • /
    • 2002
  • This research is about slurry wear of SM45C and SUS304, which using standard sand and KUM river sand. The results are as follows ; 1. Mass loss rates of both standard sand and KUM river sand were linearly increased as increasement of time and velocity. 2. The average diameter of sand from relatively, less wear rate and portion of larger particles. 3. Wear resistance was linear with time and velocity of liquid jet regardless of type of sand. Also, it was able to evaluate with the formula, $HV^2$/E calibrated with n, the velocity index. 4. The wear surface in liquid jet experiment was smooth. The maximum wear depth was observed at the location 2~4mm apart from the center in the condition of $90^{\circ}$ of collision angle 6mm of nozzle diameter, and 20mm of collision distance. The sectional shape in radial appeared as 'W'shape.

UNSTEADY THREE-DIMENSIONAL ANALYSIS OF TRANSVERSE FUEL INJECTION INTO A SUPERSONIC CROSSFLOW USING DETACHED EDDY SIMULATION (DES를 이용한 초음속 유동내 수직 연료분사 유동의 비정상 3차원 해석)

  • Won, S.H.;Moon, S.Y.;Jeung, I.S.;Choi, J.Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.97-103
    • /
    • 2008
  • Unsteady three-dimensional flowfields generated by transverse fuel injection into a supersonic mainstream are simulated with a DES turbulence model. Comparisons are made with experimental results in term of the temporal eddy position and eddy formation frequency. The vorticity field around the jet exit is also analyzed to understand the formation mechanism of the jet vortical structures. Results indicate that the DES model correctly predicts the convection characteristics of the large scale eddies. However, it is also observed that the numerical results slightly overpredict the eddy formation frequency. The jet vortical structures are developed from the competing vortices in the recirculation region of upstream boundary.

  • PDF

Investigation of Vaporized Kerosene Injection in a Supersonic Model Combustor

  • Yu, G.;Li, J.G.;Lu, X.N.;Chang, X.Y.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.79-84
    • /
    • 2004
  • This paper report our preliminary results of characterizing the jet structures of kerosene injection into quiescent atmosphere and a Mach 2.5 crossflow at various preheat temperature. A heating system has been designed and tested that can prepare heated kerosene of 0.8 kg up to 670 K at a pressure of 5.5 ㎫. Temperature measurement near the injector shows that the temperature of pressurized kerosene can be kept constant during the experimental duration. Comparison of kerosene jet structures in the preheat temperature range of 290-550 K demonstrates that with injection pressure of 4 ㎫ the jet plume turns into vapor phase completely at injection temperature of 550 K, while keeping the penetration depth essentially unchanged. The results suggest that the injection of vaporized fuel would improve the performance of a liquid hydrocarbon-fueled supersonic combustor because the evaporation process is now omitted.

  • PDF