• Title/Summary/Keyword: Jet Impingement

Search Result 215, Processing Time 0.029 seconds

A Numerical Study of the Fluid Flow and Heat Transfer Characteristics of the Two-Dimensional Turbulent Impingement Jet with a Confinement Plate (제한면을 가지는 이차원 난류 충돌젯트의 유동 및 열전달 특성의 수치적 연구)

  • 강동진;오원태
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.7
    • /
    • pp.1675-1683
    • /
    • 1995
  • A numerical study of the fluid flow and heat transfer characteristics of the two-dimensional impingement jet with a confinement plate has been carried out. The fluid flow was calculated by solving the full Navier-Stokes equation. In doing that, the well known SIMPLER algorithm was used and the trouble making convection term was discretized according to QUICKER scheme. The energy equation was simply solved by using the SOR method. For the Reynolds number of 10000, two channel heights, say 1.5 and 3.0 times the jet exit width, and two thermal boundary conditions constant wall temperature and constant wall heat flux were considered. Discrete heat sources were flush mounted along the impingement plate at a distance of 0, 2, 3, 4, 5, 6, 10, 12, times the jet exit width from the stagnation point. The length of each heat source is 4 times the jet exit width long. The Nusselt number averaged over each heat source was compared with experiment. Comparison shows that both calculations and experiment have the secondary peak of Nusselt number at downstream of stagnation point, even though there is a little quantitative difference in between. The difference is believed due to abscure thermal boundary condition in experiment and also accuracy of turbulence model used. The secondary peak is shown to be caused by rigorous turbulent flow motion generated as the wall jet flow is retarded and developes into the channel flow without flow reversal.

Cooling Performance Study of a Impinging Water Jet System with Heat Sink for High Power LEDs (분사냉각모듈 내에 부착된 히트싱크에 따른 고출력 LED의 냉각성능에 관한 연구)

  • Ku, G.M.;Kim, K.;Park, S.H.;Choi, S.D.;Heo, J.W.
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.6
    • /
    • pp.152-158
    • /
    • 2013
  • The purpose of this study is to investigate cooling performance of high power LEDs from 100 to 200 W class by using a jet impingement cooling module. The numerical analysis of forced convection cooling inside cooling module is carried out using a multi-purpose CFD software, FLUENT 6.3. In the experiments, the LED cooling system consists of jet impingement module, heat exchanger, water reservoir, and pump. In the present study, the cooling performance of jet impingement cooling module is investigated to determine the effect of the heat sink types on the impinging surface, the space and length of fins. Numerical and experimental studies show the reasonable agreement of LED metal PCB temperature between those results and give the optimized design parameters such as the space of fin and the length of fin. Also, the pin fin type of heat sink is found to be more efficient than the plate type heat sink in jet impingement cooling.

A Study on Fluid Flow and Heat Transfer of a Corrugated Structure for Crossflow Reduction of Impingement Jet (충돌제트에서의 횡방향 유동 감소를 위한 파형 구조의 유동 및 열전달에 관한 연구)

  • Hwang, Byeong Jo;Kim, Seon Ho;Joo, Won Gu;Cho, Hyung Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.5
    • /
    • pp.329-339
    • /
    • 2017
  • Impingement jets have been applied in a wide variety of fields as they provide significantly high heat transfer on the impingement-jet stagnation zone. However, the crossflow in an impingement chamber developed by spent wall jets can disrupt and deflect the downstream jets in the array, leading to a decrease in the cooling performance of an array of impingement jets. A numerical analysis is made of the fluid flow and heat transfer characteristics in a corrugated structure that traps the spent air in the corrugations between impingement jets and reduces crossflow effects on downstream jets. All computations are performed by considering a three-dimensional, steady, and incompressible flow by using the ANSYS-CFX 15.0 code. The effects of the configuration parameters of the corrugated structure on crossflow reduction of the array of impingement jets are presented and discussed.

Effect of nozzle geometry on the jet impingement heat transfer characteristics at protruding heated blocks (노즐형상에 따른 돌출 발열블록표면에서의 충돌분류 열전달 특성)

  • Chung, In-Kee;Park, Si-Woo
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.93-98
    • /
    • 2000
  • An experimental investigation on heat transfer characteristics of two-dimensional heated blocks using a confined impinging slot jet has been performed. At p/w=1, the effects of jet Reynolds number($Re=3900{\sim}12000$), dimensionless nozzle to block distance(H/B=1, 2, 4, 6) and nozzle type have been examined with five isothermally heated blocks. With the measurement of jet mean velocity and turbulence intensity distributions at nozzle exit, initially turbulent regimes, are classified. To clarify local heat transfer characteristics, naphthalene sublimation technique were used. The local and average heat transfer of heated blocks increase with the sharp-edged nozzle and increasing jet Reynolds number.

  • PDF

Heat Transfer from a Porous Heat Sink by Air Jet Impingement (충돌공기제트에서의 다공성 방열기의 열전달 특성)

  • 백진욱;김서영;강병하
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.2
    • /
    • pp.73-79
    • /
    • 2001
  • Experiment were carried out to investigate the heat transfer characteristics of an aluminum foam block as a porous heat sink on a heat source by a vertical air jet impingement that can be applied for electronics cooling. The performance of the aluminum foam heat sink was evaluated by the convective heat transfer coefficient on the heat source. At a fixed porosity, pore density ($\beta$) of the foam and Reynolds number Re were varied in the range of $\beta$a=10, 20, 40 PPI(Pore Per Inch) and $850\leqRe\leq25000$. A nozzle diameter and the nozzle-to-plate spacing were also varied. It was found that the convective heat transfer was enhanced by the aluminum foam heat sink with lower pore density due to relatively intensified flow through the foam block. The aluminum foam block with much reduced weight shows slightly better performance with larger Nusselt number, compared with the convectional heat sink.

  • PDF

A Numerical Analysis of Flow and Beat Transfer Characteristics of a Two-Dimensional Multi-Impingement Jet(II) (이차원 다중젯트의 유동 및 열전달 특성의 수치적 해석(II) -돌출열원이 있는 경우의 유동 및 열전달 특성-)

  • 장대철;이기명
    • Journal of Biosystems Engineering
    • /
    • v.20 no.1
    • /
    • pp.66-72
    • /
    • 1995
  • A numerical study for a two dimensional multi-impingement jet with crossflow of the spent fluid has been carried out. To study the flow characteristics especially in the jet flow region, three different distributions of mass flow rate at 5-jet exits were assumed. For each distribution, various Reynolds numbers ranging from laminar to turbulent flows were considered. Calculations drew the following items as conclusion. 1) A periodical fully developed flow was observed from the third protrusion. This was also observed from previous experimentally by Whidden at al. The Nessult number at the protrusion surface increased mildly as going downstream. 2) The low Reynolds number turbulence model of Launder and Sharma was found to be adequate for the prediction of fluid flow and heat transfer characteristics of two dimensional multi-jet configuration. 3) The Nusselt number at the protrusion surface was nearly proportional to the square root of the Reynolds number.

  • PDF

3-D Numerical Study on a Oblique Jet Impingement for Fluid flows and Heat Transfer Characteristics Using ${\kappa}-{\varepsilon}-\bar {{\upsilon}'^ 2}$ Model (${\kappa}-{\varepsilon}-\bar {{\upsilon}'^ 2}$ 모델을 이용한 경사진 충돌제트의 유동장 및 열전달 특성에 대한 3차원 수치해석적 연구)

  • Choi, Bong-Jun;Lee, Jung-Hee;Choi, Young-Ki
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.789-794
    • /
    • 2000
  • The Paper studies the flow and heat transfer characteristics to a jet impinging at different oblique angles, to a plane surface by numerical methods. The flowfield and heat transfer rate associated with the oblique Impingement of an axisymmetric jet are of interest as a result of its presence in numerous technological Problems. For the computation of heat transfer rate, the standard ${\kappa}-{\varepsilon}$ and ${\kappa}-{\varepsilon}-\bar {{\upsilon}'^ 2}$ turbulent model were adapted. The accuracy of the numerical calculations was compared with various experimental data reported in the literature. ${\kappa}-{\varepsilon}-\bar {{\upsilon}'^ 2}$ model showed better agreement with experimental data than standard ${\kappa}-{\varepsilon}$ model in prediction of the turbulent intensity and the heat transfer rate. In the case of computation of flowfield, the study carries on the ${\alpha}=45$ deg, h/D=4.95. The jet Reynolds number based on the nozzle diameter(D), was 48,000. For the computation of heat transfer rate, the Re=20,000, the jet orifice-to-plate spacings(L/D) are 4, 6 and 10, and the angle between the axis of the jet orifice and the plate surface is set at 30, 45, 60, or 90 deg. For the smaller spacings, the near-peak Nusselt numbers are not significantly effected by the initial decreases in the Jet angle. The overall shape of the local Nusselt number x-axis profile is influenced by both the jet orifice-to-plate spacing and the jet angle.

  • PDF

Heat/Mass Transfer on Effusion Plate with Circular Pin Fins for Impingement/Effusion Cooling System with Intial Crossflow (초기 횡방향 유동이 존재하는 충돌제트/유출냉각에서 원형핀이 설치된 유출면에서의 열/물질전달 특성)

  • Hong Sung Kook;Rhee Dong-Ho;Cho Hyung Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.7 s.238
    • /
    • pp.828-836
    • /
    • 2005
  • Impingement/effusion cooling technique is used for combustor liner or turbine parts cooling in gas turbine engine. In the impingement/effusion cooling system, the crossflow generated in the cooling channel induces an adverse effect on the cooling performance, which consequently affects the durability of the cooling system. In the present study, to reduce the adverse effect of the crossflow and improve the cooling performance, circular pin fins are installed in impingement/effusion cooling system and the heat transfer characteristics are investigated. The pin fins are installed between two perforated plates and the crossflow passes between these two plates. A blowing ratio is changed from 0.5 to 1.5 for the fixed jet Reynolds number of 10,000 and five circular pin fin arrangements are considered in this study. The local heat/mass transfer coefficients on the effusion plate are measured using a naphthalene sublimation method. The results show that local distributions of heat/mass transfer coefficient are changed due to the installation of pin fins. Due to the generation of vortex and wake by the pin fin, locally low heat/mass transfer regions are reduced. Moreover, the pin fin prevents the wall jet from being swept away, resulting in the increase of heat/mass transfer. When the pin fin is installed in front of the impinging let, the blockage effect on the crossflow enhances the heat/mass transfer. However, the pin fin installed just behind the impinging jet blocks up the wall jet, decreasing the heat/mass transfer. As the blowing ratio increases, the pin fins lead to the higher Sh value compared to the case without pin fins, inducing $16\%{\~}22\%$ enhancement of overall Sh value at high blowing ratio of M=1.5.

NUMERICAL INVESTIGATIONS OF SUPERSONIC JET IMPINGEMENT ON A FLAT WALL IN A CONFINED PLENUM (화염배출 출구면적 변화에 대한 수직발사관 내부 초음속 충돌유동의 수치적 해석)

  • Lee K. S.;Hong S. K.;Ahan C. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.281-285
    • /
    • 2005
  • Viscous solutions of supersonic jet impinging on a flat wall in a confined plenum are simulated using three-dimensional Navier-Stokes solver. A confined plenum was designed for simulating the missile launch and analyzing the behavior of the exhaust plume, which were accompanied by complex flow interactions with shock and boundary layer. Concerns of this paper are to show accurate simulation of internal flow in confined plenum and to demonstrate the jet flow structure when the jet interacts with a small opening on the side. Objectives of this numerical simulation are to understand the effect of changing the plume exit area of the plenum. Pressure and temperature rise at certain position in the plenum are traced and compared with test data.

  • PDF

PSP Pressure Field Visualization of an Oblique Impinging Jet (경사충돌제트의 PSP 압력장 가시화)

  • Kang Jong Hoon;Lee Sang Joon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.10-13
    • /
    • 2004
  • The PSP(pressure sensitive paint) technique has recently received a large attention as a new revolutionary optical method to measure absolute pressure distribution on a model surface. The PSP technique can be applied to quantitatively investigate flow structure using a CCD camera and image processing technique. In the static calibration, the luminescent intensity of PSP coatings was measured from 0kPa to 11kPa with 0.5, 1, 2kPa increments. In this study, the low-pressure PSP technique was applied to an oblique impinging jet to measure pressure field variations on the impingement plate with varying angle of an oblique jet. The flow structure over the impingement plate was visualized using a surface tracing method. As a result, the detail pressure field distributions of the oblique low-speed impinging jet were visualized effectively using the PSP technique.

  • PDF