• Title/Summary/Keyword: Javelin throwing

Search Result 11, Processing Time 0.024 seconds

Investigation of Biomechanical Factors in Track and Field Javelin Performance: A Multidimensional Analysis of Predictive Variables through Multiple Regression Analysis (육상 창던지기 기록에 미치는 운동학적 요인의 탐색: 다차원적 다중회귀를 활용한 성과 예측 변수 분석)

  • Ho-Jong Gil;Jin Joo Yang;Jong Chul Park;Young Sun Lee;Jae Myoung Park
    • Korean Journal of Applied Biomechanics
    • /
    • v.33 no.4
    • /
    • pp.175-184
    • /
    • 2023
  • Objective: The purpose of this study is to investigate the effects of human motion and javelin kinematics during the energy transfer in javelin throwing on records, and to provide evidence-based training insights for athletes and coaches to enhance records. Method: Three javelin throw athletes (age: 22.67 ± 0.58 years, height: 178.33 ± 7.37 cm, weight: 83.67 ± 1.15 kg) were recruited for this study. Each athlete attempted ten maximum record trials, and the kinematic data from each performance were analyzed to determine their influence on the records. The Theia3d Markerless system was used for motion analysis. Results: Key factors were modeled and identified at each moment. In E1, main variables were COM Y (𝛽 8.162, p<.05) and COM velocity Z (𝛽 -72.489, p<.05); in E2, COM X (𝛽 -17.604, p<.05); in E3, COM X (𝛽 -18.606, p<.05), COM velocity Y (𝛽 38.694, p<.05), and COM velocity X (𝛽 66.323, p<.05). For the javelin throw dynamics in E3, key determinants were Attitude angle and Javelin velocity in the Y-axis. Conclusion: The study reveals that controlled vertical movement, center of mass management during braking, and enhanced pelvic rotation significantly improve javelin throw performance. These kinematic strategies are critical for record enhancement in javelin throwing.

The Kinematic Analysis of the Last Stride landing and Release Phase in the Women Javelin (여자 창던지기 도움닫기 최종 1보 착지와 릴리즈 국면의 운동학적 분석)

  • Hong, Soon-Mo;Lee, Young-Sun;Kim, Tea-Sam
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.1
    • /
    • pp.51-63
    • /
    • 2004
  • The purpose of this study was to investigate a three dimensional kinematic variables about the last stride and the release phase of the throwing technique for female javelin throwers. For the motion analysis, Six female javelin throwers were used as subjects. Three-dimensional coordinates were collected using the Kwon3D Motion Analysis Package Version 2.1 Program. Two S-VHS Video Cameras were used to record the locations and orientations of control object and the performances of the subjects at a frequency of 6.0 HZ. After the kinematic variables such as the time, the distance, the velocity, and the angle were analyzed about the last stride and release phase, the followings were achieved; 1. For the effectively javelin throwing, the subjects appeared to do long the approach time in the phasel of landing phase, and short the delivery time in release phase 2. In the release event, the other subjects except for subject A appeared to throwing in the lower condition than the height of themselves. This result showed to slow the projecion velocity. 3. For increase the projection vcelocity of the upper extremity joint in the release event, it appeared to do extend rather the shoulder angle than increase the extension of elbow joint. 4. The body of COG angle showed to gradually increase nearly at the vertical axis in the release event. But the front lean angle of trunk showed a small angle compare to increase of the body of COG angle. Therefore for the effectively momentum transmission of the whole body in the javelin, the front and back lean angle of trunk appeared to do fastly transfer the angle displacement in the arch posture or the crescent condition during the deliverly motion of the release phase.

Evaluation of Consistency on Kinematic Factors in Women Javelin Throw (여자 창던지기 운동학적 요인의 일관성 평가)

  • Hong, Soon-Mo;Lee, Young-Sun
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.4
    • /
    • pp.65-71
    • /
    • 2007
  • The purpose of this study was to investigate variability of kinematic factors affecting the record in women's javelin throwing. For this study, 8 female-javelin thrower participated in this experiment. The three digital video cameras (Sony, 120x) were used to record motions. Kwon3D 2.1 was used to process data and they were analyzed with Excell for factors. The sampling rate of a camera was 60Hz and shutter speed of a camera was 1/1000sec. The coordinate data were filtered using a fourth-order Butterworth low pass filtering with an estimated optimum cut-off frequency of 6Hz. The results were as follows: 1. From cross step to landing of delivery, the average velocities of CoM of non-dominant athletes were greater than dominant athletes and those of CoM of non-dominant athletes less than dominant athletes, but at release dominant athletes had a lower average velocity and a variability than non-dominant athletes. 2. From cross step to landing of delivery, the average throwing velocities and variabilities of a javelin of dominant athletes were greater than dominant athletes, but at release, dominant athletes had a higher velocity than dominant athletes and had a equal variability. 3. At every events, a forward or backward angles and variabilities of non-dominant athletes were greater than dominant athletes. 4. From cross step to landing of delivery, dominant athletes' elbow average angles were greater than non-dominant athletes and the variabilities of latter less than non-dominant athletes, but at release dominant athletes' variabilities were smaller than non-dominant athletes. 5. At landing of delivery, dominant athletes' knee average angles and variabilities of a supporting foot were a greater than non-dominant athletes, and at release, dominant athletes' knee average angles was a greater but variabilities less than non-dominant athletes. In conclusion, the dominant threw javelins fast while having stable postures and the range of elbow's angle large.

Kinematical Analysis of Projection Factors to Record Difference dur ing Women's Javelin Throwing (여자 창던지기 시 기록 차이에 따른 투사요인의 운동학적 분석)

  • Park, Jae-Myoung;Yoon, Seok-Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.4
    • /
    • pp.457-467
    • /
    • 2010
  • This study intends to analyze the projection factors' difference on each record of women's javelin throwing. For this purpose, the research analyzed the best record and the lowest one of athletes in top 1~7 ranks respectively, who participated in 2009 Daegu Pre-Championship Meeting. For analyze kinematic factors, we analyzed their game photos mainly shot by 3 cameras installed in side places. The used analysis program was Kwon3D 3.1. Analysis variables were the projection velocity, angle, height, trunk lean angle, and supporting leg's knee angle. The results concluded as follows: Different record showed statistically significant differences(p<.05) in terms of horizontal velocity and resultant velocity. There were no statistically significant differences in the variables of projection angle, its height, trunk lean angle and knee angle of support leg. But for the analyzed results to each individual characteristics, the horizontal velocity, projection height, knee angle of support leg and trunk lean angle of release event appeared to have influence on record.

The Relationship between the Distance and Release Parameters in Korean Female Javelin Throwers (한국 여자 창던지기 선수들의 기록과 릴리즈 요인과의 관계)

  • Kim, Tae-Sam;Ryu, Ji-Seon;Lee, Soon-Ho
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.2
    • /
    • pp.131-140
    • /
    • 2012
  • This study was to investigate the relationship between the distance and projection factors, angle factors of javelin in women's javelin throwing. The data were collected in the 2011 National Sports Festivals for 11 players. Three-Dimensional motion analysis using a system of 4 video cameras at a sampling frequency of 60 fields/s was performed for this study. The factors of release conditions calculated using Matlab 2009a program. The statical analysis on the records(n=42) included mean and standard deviation of the mean(SD), Pearson's product moment correlation coefficient(SPSS Version 16.0 for Windows). There was a statistically significant positive relationship between the records and release velocity(r=.866, p<.01), height(r=.433, p<.01) and height rate(r=.340, p<.05). The attitude angle, release angle, and attack angle showed not a statistically significant relationship between the records. The medial-lateral tilt angle of javelin showed not a statistically significant relationship between the records, but the yaw angle of javelin(r=.549, p<.01) showed a statistically significant positive relationship between the records.

The Relationship between the Distance and Kinematical Parameters of Javelin in Korean Male Javelin Throwers (한국 남자 창던지기 선수들의 창의 운동학적 요인과 기록과의 관계)

  • Kim, Woo-Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.3
    • /
    • pp.217-227
    • /
    • 2014
  • The purpose of this study was to investigate the relationship between distance and factors of javelin in korean male's javelin throwing. To accomplish this purpose, the analyzed trail selected total 29 trails (subjects 9) recorded more than 65 m in the 93rd National Sports Festival. The Kwon3D 3.1 version was used to obtain the three dimensional coordinates about the top, grip, end of javelin. And the kinematic data such as projection factors and direction angle of javelin calculated using Matlab2009a program. The statical analysis on the records (n=29) were used to Pearson's product moment correlation coefficient. There was a statistically positive relationship between the records and horizontal velocity (r=.866, ${\rho}$<.01), height (r=.541, ${\rho}$ <.001), height rate (r=.373, ${\rho}$ <.05) and horizontal displacement of javelin (r=.749, ${\rho}$ <.01), but the medial/lateral velocity showed a negative relationship to r=-.663 (${\rho}$ <.01). The attack and yaw angle showed not a significant relationship between the records, but the medial-lateral tilt (E1:r =-.557 [p<.01)] E2:r=-.629 [${\rho}$<.01], E3:r=-.528 [${\rho}$ <.01]) and attitude angle (E2:r=-.629 [[${\rho}$<.01], E3:r=-.619 [${\rho}$ <.01]) of javelin showed a negative relationship between the records, as well as the projection angle of javelin (r=-.419, ${\rho}$ <.05) showed a negative relationship between the records.

Kinematical Analysis of Woman Javelin Throwing (창던지기 동작의 kinematic적 특성분석)

  • Lee, Jong-Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.12 no.2
    • /
    • pp.345-359
    • /
    • 2002
  • The purpose of the study was to provide the fundamental data to instruct athletes through the analysis athletes' movement in javelin. Three athletes in the level of national representative were participated in this study. The study analyzed kinematic variables(lead foot and releasing javelin) through 3-D analysis and obtained the following results. 1. During withdrawal, it is important to maintain of running horizontal velocity. 2. It was showed that throng average height was $84{\pm}3.3%$ and javelin adequative degree, Among the athletes, $S_2$ who had the best record was released the javelin with the fast velocity, but throw the javelin with the less releasing velocity. 3. $S_2$ released after lead foot were completely landed and therefore it is no problem in a kinematic aspect. However, $S_1$ angle was too small. it caused increase of release velocity to be prevented. 4. $S_2$ showing the best result indicated shorter in duration time. Generally, the shorter duration time in release phase showed the longer release distance. Especially $S_1$ and $S_3$ showing the worse result indicated the longer duration time in preparatory phase, causing the breakup of force. Therefore to improve the record, it should be decreased the duration time in preparatory phase. 5. Compared with $S_1$ and $S_3$, $S_2$ showing the best record indicated the higher velocity in center of mass, trunk, upper arm, lower arm and hand That is the higher velocity of upper arm at release leaded the better velocity transfer from upper arm to following lower arm and hand, these action should be considered to be helpful of better record. According to the above conclusion, when the athletic leaders cauch athletes, they should focus on maintaining knee angle, upper body and hip angle in a previous stage of release and throwing angle, throwing height, throwing velocity in a release stage.

Three-dimensional Comparison of Selected Kinematics between Male Medalists and Korean Male Javelin Thrower at the IAAF World Championships, Daegu 2011 (2011 대구 세계육상선수권 대회에 참가한 한국 남자 창던지기 선수와 입상자들의 3차원 운동학적 비교 분석)

  • Chae, Woen-Sik;Yoon, Chang-Jin;Lim, Young-Tae;Lee, Haeng-Seob;Kim, Dong-Soo
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.5
    • /
    • pp.653-660
    • /
    • 2011
  • The purpose of this study was to compare selected kinematic variables between male medalists and a Korean male javelin thrower at the IAAF World Championships, Daegu 2011. The three medalists and one Korean javelin thrower that participated in the Championships were videotaped using three high-speed cameras (300 frames/s, EX-F1 Exilim, Casio, Japan). The results showed that the release and attitude angles of the Korean male javelin thrower (KMJT) were greater than that of the medalists, whereas the attack angle of the KMJT was smaller than that of the medalists. This study also found that the KMJT clearly had a lower release height than the medalists. As a possible adaptation of his physique to the skill, the KMJT used a small trunk inclination angle and produced greater inclination angles at his upper extremities. These results may be linked to an increase in the release angle of the KMJT. There were some difference between the KMJT and the medalists in terms of the length and duration of the delivery phase. In harmony with the shorter length of the delivery phase, its duration was shorter for the KMJT in comparison to the medalists. Because the delivery stride is considered to be a primary generator of endpoint speed, this decrease in the delivery phase time would decrease the javelin velocity at release. The amount of time taken in the delivery phase may be a critical factor to enhance a javelin thrower's performance. Thus, rhythmic movement training specifically designed for the KMJT will help him attain an optimal throwing position.

Relationship Official Records and Release Parameters to Trails in Women's Javelin Throwing (여자 창던지기 시 시기 별 기록과 릴리즈 요인과의 관계)

  • Kim, tae-sam;Lee, mi-sook;Nam, jeong-hoon
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2012.05a
    • /
    • pp.405-406
    • /
    • 2012
  • 이 연구는 여자 창던지기 선수들의 투사요인, 창 각의 특성과 기록과의 관계를 통해서 기록에 미치는 영향을 분석한 것이다. 투사요인 중 투사높이와 투사속도가 기록과 정적 관계를 보이면서 릴리즈순간 투사높이가 높고, 투사속도가 클수록 기록이 좋은 것으로 나타났다. 특히 창 각과 관련된 자세각과 공격각의 경우 기록과 낮은 관계를 보인 반면에 요 각은 기록과 정적 관계를 보여 릴리즈 순간 0보다 큰 각도에서 릴리즈가 이루어져야하는 것으로 나타났다.

  • PDF

The Kinematic Analysis of Cross Over Step and Delivery Phase in Female Javelin Throwing Players (여자 창던지기 크로스 스텝과 딜리버리 국면의 운동학적 분석)

  • Lee, Young-Sun
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.3
    • /
    • pp.149-163
    • /
    • 2004
  • This study analyzed kinematic variables about the cross step, the delivery and the release for women's javelin athletics recorded over 50m in the 2004 Busan International Athletics Competition. It was used the Kwon3D Motion Analysis Package Ver. 3.1 Program(Kwon, 2000) for analysing the kinematic variables about the distance, the velocity, and the angle, then we had the results as follows; 1 In the Cross step phase, the COG velocity was low because their step length was short. To keep the CM velocity from the approach to the last cross over step contact, the athletes have to keep the longer step length within about 130% of the athletics' height. 2. In the Delivery phase, the athletics' COG height was gradually lower, and the deceleration of the COG was going up. As the same in the cross step, Therefore the athletes have to increase the step length within about 100% of their height, in order to increasing the COG velocity. And it was shown they have to make small angle of the elbow as possible from the right foot contact to the left foot contact in order to being the big acceleration of the upperarm at the release phase. 3. In the release phase, it was shown to being low position of the release point as the COG was low and then the release velocity of the upperarm was low. Specially when the shoulder lean lateral angle is big at the release phase, it was shown they have a excessive release angle. And, when it was shown the high rotation angle of the shoulder, the shoulder was opened forward bigger than the trunk was opened forward. So the transmission of velocity from the proximal segments was a fast change.