• Title/Summary/Keyword: Jatropha curcas oil

Search Result 9, Processing Time 0.029 seconds

Physical wounding-assisted Agrobacterium-mediated transformation of juvenile cotyledons of a biodiesel-producing plant, Jatropha curcas L.

  • Khemkladngoen, Naruemon;Cartagena, Joyce A.;Fukui, Kiichi
    • Plant Biotechnology Reports
    • /
    • v.5 no.3
    • /
    • pp.235-243
    • /
    • 2011
  • The non-edible plant Jatropha curcas L. is one of the most promising feedstock for sustainable biodiesel production as it is not a source of edible vegetable oils, produces high amounts of oil (approx. 30-60% in dry seeds) and does not require high-cost maintenance. However, as with other undomesticated crops, the cultivation of J. curcas presents several drawbacks, such as low productivity and susceptibility to pests. Hence, varietal improvement by genetic engineering is essential if J. curcas is to become a viable alternative source of biodiesel. There is to date no well-established and efficient transformation system for J. curcas. In this study, we tested various physical wounding treatments, such as sonication and sand-vortexing, with the aim of developing an efficient Agrobacterium-mediated transformation for J. curcas. The highest stable transformation rate (53%) was achieved when explants were subjected to 1 min of sonication followed by 9 min of shaking in Agrobacterium suspension. The transformation frequency achieved using this protocol is the highest yet reported for J. curcas.

Floral Biology and Flowering Phenology of Jatropha Curcas

  • Singh, Amritpal S.;Patel, Mukesh P.;Patel, Tanmay K.;Delvadia, D.R.;Patel, Diwaker R.;Kumar, Nitish;Naraynan, Subhash;Fougat, Ranbir S.
    • Journal of Forest and Environmental Science
    • /
    • v.26 no.2
    • /
    • pp.95-102
    • /
    • 2010
  • Jatropha curcas is an oil bearing species with multiple uses and considerable economic potential as a biofuel plant. Plant flowering and breeding characteristics are important for us to understand the reproduction of plant populations. The present study describes the floral biology and flowering phenology of J. curcas which is a prerequisite for hybridization program for genetic improvement through conventional breeding. The plant produces flowers in dichasial inflorescences. Normally, the flowers are unisexual, and male and female flowers are produced in the same inflorescence. Only a few male flowers are produced in an inflorescence, and fruits are produced only through pollination between different flowers from the same or different plants. This study includes a description of the inflorescence, flower anatomy of both male and female flowers, female : male ratio, pollen : ovule ratio, flowering phenology, pollen viability, stigma receptivity, comparison of selfing methods and a comparison of geitonogamy and xenogamy. This information may be useful in J. curcas breeding programmes.

Transesterification of Jatropha Oil over Ceria-Impregnated ZSM-5 for the Production of Bio-Diesel

  • Bhagiyalakshmi, Margandan;Vinoba, Mari;Grace, Andrews Nirmala
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.3059-3064
    • /
    • 2013
  • In this study transesterification of Triglycerides (TG) from Jatropha curcas oil (JCO) with methanol for production of biodiesel was investigated over cerium impregnated ZSM-5 catalysts. NaZSM-5 was synthesized in an alkaline medium and impregnated with cerium oxide by wet method using cerium nitrate as a source for cerium. They were characterized by X-ray diffraction (XRD), Thermogravimeteric analysis (TGA), $CO_2$-temperature programmed desorption, and $N_2$ adsorption/desorption analysis. XRD analysis showed decrease in intensity of the patterns with the increase in the ceria loading but crystallization of ceria to larger size is an evident for 10 and 15% loading. The optimal yield of transesterification process was found to be 90% under the following conditions: oil to methanol molar ratio: 1:12; temperature: $60^{\circ}C$; time: 1 h; catalyst: 5 wt %. Here the yield of fatty acid methyl ester (FAME) was calculated through $^1H$ NMR analysis. The investigation on catalyst loading, temperature, time and reusability illustrated that these ceria impregnated NaZSM-5's were found to be selective, recyclable and could yield biodiesel at low temperature with low methanol to oil ratio due to the presence of both Lewis and Bronsted basicity. Hence, from the above study it is concluded that ceria impregnated ZSM-5 could be recognized as a potential catalysts for biodiesel production in industrial processes.

Fast Pyrolysis Characteristics of Jatropha Curcas L. Seed Cake with Respect to Cone Angle of Spouted Bed Reactor (분사층 반응기의 원뿔각에 따른 Jatropha Curcas L. Seed Cake의 급속열분해 특성)

  • Park, Hoon Chae;Lee, Byeong-Kyu;Kim, Hyo Sung;Choi, Hang Seok
    • Clean Technology
    • /
    • v.25 no.2
    • /
    • pp.161-167
    • /
    • 2019
  • Several types of reactors have been used during the past decade to perform fast pyrolysis of biomass. Among the developed fast pyrolysis reactors, fluidized bed reactors have been widely used in the fast pyrolysis process. In recent years, experimental studies have been conducted on the characteristics of biomass fast pyrolysis in a spouted bed reactor. The fluidization characteristics of a spouted bed reactor are influenced by particle properties, fluid jet velocity, and the structure of the core and annulus. The geometry of the spouted bed reactor is the main factor determining the structure of the core and annulus. Accordingly, to optimize the design of a spouted bed reactor, it is necessary to study the pyrolysis characteristics of biomass. However, no detailed investigations have been made of the fast pyrolysis characteristics of biomass in accordance with the geometry of the spouted bed reactor. In this study, fast pyrolysis experiments using Jatropha curcas L. seed shell cake were conducted in a conical spouted bed reactor to study the effects of reaction temperature and reactor cone angle on the product yield and pyrolysis oil quality. The highest energy yield of pyrolysis oil obtained was 63.9% with a reaction temperature of $450^{\circ}C$ and reactor cone angle of $44^{\circ}$. The results showed that the reaction temperature and reactor cone angle affected the quality of the pyrolysis oil.

Efficient plant regeneration from immature embryo cultures of Jatropha curcas, a biodiesel plant

  • Varshney, Alok;Johnson, T. Sudhakar
    • Plant Biotechnology Reports
    • /
    • v.4 no.2
    • /
    • pp.139-148
    • /
    • 2010
  • Jatropha curcas L. (Physic nut) is a commercially important non-edible oil seed crop known for its use as an alternate source of biodiesel. In order to investigate the morphogenic potential of immature embryo, explants from four developmental stages were cultured on medium supplemented with combinations of auxins and cytokinins. It was found that the size of embryo is critical for the establishment of callus. Immature embryos (1.1-1.5 cm) obtained from the fruits 6 weeks after pollination showed a good response of morphogenic callus induction (85.7%) and subsequent plant regeneration (70%) with the maximum number of plantlets (4.7/explant) on Murashige and Skoog's (MS) medium supplemented with IBA (0.5 $mg\;l^{-1}$) and BA (1.0 $mg\;l^{-1}$). The above medium when supplemented with growth adjuvants such as 100 $mg\;l^{-1}$ casein hydrolysate + 200 $mg\;l^{-1}$ L-glutamine + 8.0 $mg\;l^{-1}$ $CuSO_4$ resulted in an even higher frequency of callus induction (100%). Plant regeneration (90%) with the maximum number of plantlets (10/explant) was achieved on MS medium supplemented with 500 $mg\;l^{-1}$ polyvinyl pyrrolidone + 30 $mg\;l^{-1}$ citric acid + 1 $mg\;l^{-1}$ BA + 0.5 $mg\;l^{-1}$ Kn + 0.25 $mg\;l^{-1}$ IBA. It was observed that plantlet regeneration could occur either through organogenesis of morphogenic callus or via multiplication of pre-existing meristem in immature embryos. The age of immature embryos and addition of a combination of growth adjuvants to the culture medium appear to be critical for obtaining high regeneration rates. Well-developed shoots rooted on half-halfstrength MS medium supplemented with 0.5 $mg\;l^{-1}$ IBA and 342 $mg\;l^{-1}$ trehalose. The rooted plants after acclimatization were successfully transferred to the field in different agro-climatic zones in India. This protocol has been successfully evaluated on five elite lines of J. curcas.

Comparative Response of Callus and Seedling of Jatropha curcas L. to Salinity Stress

  • Kumar, Nitish;Kaur, Meenakshi;Pamidimarri, D.V.N. Sudheer;Boricha, Girish;Reddy, Muppala P.
    • Journal of Forest and Environmental Science
    • /
    • v.24 no.2
    • /
    • pp.69-77
    • /
    • 2008
  • Jatropha curcas L. is an oil bearing species with many uses and considerable economic potential as a biofuel crop. Salt stress effect on growth, ion accumulation, contents of protein, proline and antioxidant enzymes activity was determined in callus and seedling to understand the salt tolerance of the species. Exposure of callus and seedling to salt stress reduced growth in a concentration dependent manner. Under salt stress Na content increased significantly in both callus and seedling whereas, differential accumulation in the contents of K, Ca, and Mg was observed in callus and seedling. Soluble protein content differed significantly in callus as compared to seedling, however proline accumulation remained more or less constant with treatments. The proline concentration was ~2 to 3 times more in callus than in seedling. Salt stress induced qualitative and quantitative differences in superoxide dismutase (SOD; E.C. 1.15.1.1) and peroxidase (POX; E.C. 1.11.1.7) in callus and seedling. Salt induced changes of the recorded parameters were discussed in relation to salinity tolerance.

  • PDF

Inedible Vegetable Oil as Substitute Fuel in Compression Ignition Engines-Jatropha Oil

  • No, Soo-Young
    • Journal of ILASS-Korea
    • /
    • v.14 no.4
    • /
    • pp.153-162
    • /
    • 2009
  • The use of inedible vegetable oils as substitute for diesel fuel in compression ignition engine is of significance because of the great need for edible oil as food, and the reduction of biodiesel production cost etc. Jatropha curcas oil which is a leading candidate for the commercialization of inedible vegetable oils is selected in this study for reviewing the application in CI engine as an alternative fuel. The important properties of jatropha oil (JO) and JO biodiesel are summarized from the various sources in the literature. It is found that five different types of alternative fuel from JO such as neat JO, JO blends with diesel or other fuel, neat JO biodiesel, JO biodiesel blends with diesel or other fuel and degummed JO were extensively examined in the diesel engine. Two different application types of alternative fuels from JO such as preheating and dual fuelling were also tested, It should be pointed out that most of these applications are limited to single cylinder conditions. The systematic study for the selection of effective application method is required. It is clear that the blends of JOME and diesel can replace diesel fuel up to 10% by volume for running the existing common rail direct injection systems without any durability problems. The systematic assessment of spray characteristics of different types of JO and its derivatives for use as diesel engine fuel is also required.

  • PDF

A Study on Heterogeneous Catalysts for Transesterification of Nepalese Jatropha Oil (네팔산 Jatropha 오일의 전이에스테르화 반응용 불균일계 촉매 연구)

  • Youngbin Kim;Seunghee Lee;Minseok Sim;Yehee Kim;Rajendra Joshi;Jong-Ki Jeon
    • Clean Technology
    • /
    • v.30 no.1
    • /
    • pp.47-54
    • /
    • 2024
  • Jatropha oil extracted from the seeds of Nepalese Jatropha curcas, a non-edible crop, was used as a raw material and converted to biodiesel through a two-step process consisting of an esterification reaction and a transesterification reaction. Amberlyst-15 catalyst was applied to the esterification reaction between the free fatty acids contained in the Jatropha oil and methanol. The acid value of the Jatropha oil could be lowered from 11.0 to 0.26 mgKOH/g through esterification. Biodiesel was synthesized through a transesterification reaction between Jatropha oil with an acid value of 0.26 mgKOH/g and methanol over NaOH/γ-Al2O3 catalysts. As the loading amount of NaOH increased from 3 to 25 wt%, the specific surface area decreased from 129 to 28 m2/g and the pore volume decreased from 0.249 to 0.129 cm3/g. The amount and intensity of base sites over the NaOH/γ-Al2O3 catalysts increased simultaneously with the NaOH loading amount. It was confirmed that the optimal NaOH loading amount for the NaOH/γ-Al2O3 catalyst was 12 wt%. The optimal temperature for the transesterification reaction of Jatropha oil using the NaOH/γ-Al2O3 catalyst was selected to be 65 ℃. In the transesterification reaction of Jatropha oil using the NaOH/γ-Al2O3 catalyst, the reaction rate was affected by external diffusion limitation when the stirring speed was below 150 RPM, however the external diffusion limitation was negligible at higher stirring speeds.

Plant Toxins and Detoxification Methods to Improve Feed Quality of Tropical Seeds - Review -

  • Makkar, H.P.S.;Becker, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.3
    • /
    • pp.467-480
    • /
    • 1999
  • Many antinutritional and toxic factors abound in tropical seeds, which are also generally rich in nutrients and therefore more prone to attack from herbivores. Antinutritional and toxic factors are considered to defend seeds against environmental vagaries and thus help to protect them. These factors though good for the plant, cause deleterious effects or are even toxic to animals and man. The conventional seeds cultivated for oil or non-oil purposes, and general aspects of antinutritional factors are not presented here as these have already been discussed widely by many workers. Deficits in conventional protein and energy sources in the tropics have stimulated a quest for alternative feeds both for animals and humans. This article attempts to highlight two new oilseed crops, Jatropha curcas and Moringa oleifera, and in addition deals with some under-utilized seeds with potential as animal feed. Most of these seed plants are adapted to various marginal growing conditions in the tropics and can help to mitigate the prevailing deficit in protein and energy sources. Antinutritional and toxic factors in seed or seed meal, various approaches to detoxify seed meal, and future research and development priorities for their exploitation as animal feeds are presented.