• Title/Summary/Keyword: Janus kinase-2 (JAK2)

Search Result 32, Processing Time 0.026 seconds

JAK/STAT Pathway Modulates on Porphyromonas gingivalis Lipopolysaccharide- and Nicotine-Induced Inflammation in Osteoblasts (조골세포에서 Porphyromonas gingivalis Lipopolysaccharide와 니코틴에 의한 염증에 대한 JAK/STAT Pathway의 역할)

  • Han, Yang-keum;Lee, In Soo;Lee, Sang-im
    • Journal of dental hygiene science
    • /
    • v.17 no.1
    • /
    • pp.81-86
    • /
    • 2017
  • Bacterial infection and smoking are an important risk factors involved in the development and progression of periodontitis. However, the signaling mechanism underlying the host immune response is not fully understood in periodontal lesions. In this study, we determined the expression of janus kinase (JAK)/signal transducer and activator of transcription (STAT) on Porphyromonas gingivalis lipopolysaccharide (LPS)- and nicotine-induced cytotoxicity and the production of inflammatory mediators, using osteoblasts. The cells were cultured with 5 mM nicotine in the presence of $1{\mu}g/ml$ LPS. Cell viability was determined using MTT assay. The role of JAK on inflammatory mediator expression and production, and the regulatory mechanisms involved were assessed via enzyme-linked immunosorbent assay, reverse transcription-polymerase chain reaction, and Western blot analysis. LPS- and nicotine synergistically induced the production of cyclooxgenase-2 (COX-2) and prostaglandin $E_2$ ($PGE_2$) and increased the protein expression of JAK/STAT. Treatment with an JAK inhibitor blocked the production of COX-2 and $PGE_2$ as well as the expression of pro-inflammatory cytokines, such as tumor necrosis factor-${\alpha}$, interleukin-$1{\beta}$ ($IL-1{\beta}$), and IL-6 in LPS- and nicotine-stimulated osteoblasts. These results suggest that JAK/STAT is closely related to the LPS- and nicotine-induced inflammatory effects and is likely to regulate the immune response in periodontal disease associated with dental plaque and smoking.

Procaine Attenuates Pain Behaviors of Neuropathic Pain Model Rats Possibly via Inhibiting JAK2/STAT3

  • Li, Donghua;Yan, Yurong;Yu, Lingzhi;Duan, Yong
    • Biomolecules & Therapeutics
    • /
    • v.24 no.5
    • /
    • pp.489-494
    • /
    • 2016
  • Neuropathic pain (NPP) is the main culprit among chronic pains affecting the normal life of patients. Procaine is a frequently-used local anesthesia with multiple efficacies in various diseases. However, its role in modulating NPP has not been reported yet. This study aims at uncovering the role of procaine in NPP. Rats were pretreated with procaine by intrathecal injection. Then NPP rat model was induced by sciatic nerve chronic compression injury (CCI) and behavior tests were performed to analyze the pain behaviors upon mechanical, thermal and cold stimulations. Spinal expression of Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3) was detected by qRT-PCR and western blot. JAK2 was also overexpressed in procaine treated model rats for behavior tests. Results showed that procaine pretreatment improved the pain behaviors of model rats upon mechanical, thermal and cold stimulations, with the best effect occurring on the $15^{th}$ day post model construction (p<0.05). Procaine also inhibited JAK2 and STAT3 expression in both mRNA (p<0.05) and protein levels. Overexpression of JAK2 increased STAT3 level and reversed the improvement effects of procaine in pain behaviors (p<0.01). These findings indicate that procaine is capable of attenuating NPP, suggesting procaine is a potential therapeutic strategy for treating NPP. Its role may be associated with the inhibition on JAK2/STAT3 signaling.

Interaction of Bovine Growth Hormone with Buffalo Adipose Tissue and Identification of Signaling Molecules in Its Action

  • Sodhi, R.;Rajput, Y.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.7
    • /
    • pp.1030-1038
    • /
    • 2007
  • Results on localization of growth hormone receptor (GHR), interaction of growth hormone (GH) with receptor in buffalo adipose tissue and identification of activated signaling molecules in the action of GH are presented. Bovine GH (bGH) was labeled with fluorescein or biotin. Fluorescein-labelled bGH was used for localization of GHRs in buffalo adipocytes. The receptors were present on the cell surface. The affinity of binding of GH to its receptor was determined by designing an experiment in which buffalo adipose tissue explants, biotinylated GH and streptavidin-peroxidase conjugate were employed. The affinity constant was calculated to be $2{\times}10^8M^{-1}$. The receptor density on adipose tissue was found to be 1 femto mole per mg of tissue. Signalling molecules generated in the action of GH were tentatively identified by employing Western blot and enhanced chemiluminescence techniques using anti-phosphotyrosine antibody. Based on molecular weights of proteins reactive to anti-phosphotyrosine antibody, three signaling molecules viz. insulin receptor substrate, Janus activated kinase (Jak) and mitogen activated protein were tentatively identified. These signaling molecules appeared in a time (incubation time of explants with growth hormone) dependent way. The activation of Jak2 was confirmed by employing anti-Jak2 antibody in a Western blot. The activation of Jak2 occurred during 5 min incubation of buffalo adipose tissue explants with GH and incubation for an additional period, viz. 30 min. or 60 min., resulted in a drastic reduction in activation. The results suggest that Jak2 activation is an early event in the action of GH in buffalo adipose tissue.

Cripto Enhances Proliferation and Survival of Mesenchymal Stem Cells by Up-Regulating JAK2/STAT3 Pathway in a GRP78-Dependent Manner

  • Yun, SeungPil;Yun, Chul Won;Lee, Jun Hee;Kim, SangMin;Lee, Sang Hun
    • Biomolecules & Therapeutics
    • /
    • v.26 no.5
    • /
    • pp.464-473
    • /
    • 2018
  • Cripto is a small glycosylphosphatidylinositol-anchored signaling protein that can detach from the anchored membrane and stimulate proliferation, migration, differentiation, vascularization, and angiogenesis. In the present study, we demonstrated that Cripto positively affected proliferation and survival of mesenchymal stem cells (MSCs) without affecting multipotency. Cripto also increased expression of phosphorylated janus kinase 2 (p-JAK2), phosphorylated signal transducer and activator of transcription 3 (p-STAT3), 78 kDa glucose-regulated protein (GRP78), c-Myc, and cyclin D1. Notably, treatment with an anti-GRP78 antibody blocked these effects. In addition, pretreatment with STAT3 short interfering RNA (siRNA) inhibited the increase in p-JAK2, c-Myc, cyclin D1, and BCL3 levels caused by Cripto and attenuated the pro-survival action of Cripto on MSCs. We also found that incubation with Cripto protected MSCs from apoptosis caused by hypoxia or $H_2O_2$ exposure, and the level of caspase-3 decreased by the Cripto-induced expression of B-cell lymphoma 3-encoded protein (BCL3). These effects were sensitive to down-regulation of BCL3 expression by BCL3 siRNA. Finally, we showed that Cripto enhanced expression levels of vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), and hepatocyte growth factor (HGF). In summary, our results demonstrated that Cripto activated a novel biochemical cascade that potentiated MSC proliferation and survival. This cascade relied on phosphorylation of JAK2 and STAT3 and was regulated by GRP78. Our findings may facilitate clinical applications of MSCs, as these cells may benefit from positive effects of Cripto on their survival and biological properties.

Methylated Alteration of SHP1 Complements Mutation of JAK2 Tyrosine Kinase in Patients with Myeloproliferative Neoplasm

  • Yang, Jun-Jun;Chen, Hui;Zheng, Xiao-Qun;Li, Hai-Ying;Wu, Jian-Bo;Tang, Li-Yuan;Gao, Shen-Meng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.6
    • /
    • pp.2219-2225
    • /
    • 2015
  • SHP1 negatively regulates the Janus kinase 2/signal transducer and activator of transcription (JAK2/STAT) signaling pathway, which is constitutively activated in myeloproliferative neoplasms (MPNs) and leukemia. Promoter hypermethylation resulting in epigenetic inactivation of SHP1 has been reported in myelomas, leukemias and other cancers. However, whether SHP1 hypermethylation occurs in MPNs, especially in Chinese patients, has remained unclear. Here, we report that aberrant hypermethylation of SHP1 was observed in several leukemic cell lines and bone marrow mononuclear cells from MPN patients. About 51 of 118 (43.2%) MPN patients including 23 of 50 (46%) polycythaemia vera patients, 20 of 50 (40%) essential thrombocythaemia and 8 of 18 (44.4%) idiopathic myelofibrosis showed hypermethylation by methylation-specific polymerase chain reaction. However, SHP1 methylation was not measured in 20 healthy volunteers. Hypermethylation of SHP1 was found in MPN patients with both positive (34/81, 42%) and negative (17/37, 45.9%) JAK2V617F mutation. The levels of SHP1 mRNA were significantly lower in hypermethylated samples than unmethylated samples, suggesting SHP1 may be epigenetically inactivated in MPN patients. Furthermore, treatment with 5-aza-2'-deoxycytidine (AZA) in K562 cells showing hypermethylation of SHP1 led to progressive demethylation of SHP1, with consequently increased reexpression of SHP1. Meanwhile, phosphorylated JAK2 and STAT3 were progressively reduced. Finally, AZA increased the expression of SHP1 in primary MPN cells with hypermethylation of SHP1. Therefore, our data suggest that epigenetic inactivation of SHP1 contributes to the constitutive activation of JAK2/STAT signaling. Restoration of SHP1 expression by AZA may contribute to clinical treatment for MPN patients.

Anti-inflammatory effects of Chamaecyparis obtusa (Siebold & Zucc.) Endl. Leaf Fractions (편백(Chamaecyparis obtusa (Siebold & Zucc.) Endl.) 잎 분획물의 항염증 효과)

  • Yong-Jin Kwon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.40 no.6
    • /
    • pp.1268-1277
    • /
    • 2023
  • In this study, to evaluate the possibility of utilizing Chamaecyparis obtusa (Siebold & Zucc.) Endl. (C. obtusa) leaf fractions as anti-inflammatory functional materials, C. obtusa extract extracted with 99% ethanol (CO99EL) was fractionated with hexane (CO99EL-H), chloroform (CO99EL-C), ethyl acetate (CO99EL-E), butanol (CO99EL-B) and distilled water (CO99EL-W). The anti-inflammatory effects of each fraction was performed using lipopolysaccharide (LPS)-induced RAW264.7 mouse macrophages. Cytotoxicity was highest in CO99EL-H and CO99EL-C and lowest in CO99EL-W. Interestingly, LPS-induced iNOS expression and NO production were significantly reduced by CO99EL-H and CO99EL-E, and COX-2 expression was significantly reduced by CO99EL-B and CO99EL-W. In addition, interleukin (IL)-1𝛽, an inflammatory cytokine increased by LPS, was significantly reduced by CO99EL-C, CO99EL-E, CO99EL-B and CO99EL-W, and IL-6 was significantly reduced by CO99EL-B and CO99EL-W. Therefore, the janus kinase (JAK)/signaling transducer and activator of transcription (STAT) signaling pathway activated by LPS was significantly reduced by CO99EL-H and CO99EL-C, and the mitogen-activated protein kinase (MAPK) signaling pathway was slightly reduced by CO99EL-H and CO99EL-C. However, nuclear factor (NF)-𝜅B activity was not reduced by any fractions. Based on the results of this study, it was confirmed that CO99EL fractions have different anti-inflammatory mechanisms depending on the solvent used for fractionation.

A Case of Essential Thrombocythemia Presenting as Esophageal Varix Bleeding and Multiple Thrombosis (식도정맥류 출혈과 다발성 혈전증으로 발견된 본태성 혈소판 증다증 1예)

  • Yoon, So-Yeon;Choi, Jun-Hyeok;Kang, Sun-Mi;Cho, Jung-Nam;Bae, Sung-Hwa;Ryoo, Hun-Mo
    • Journal of Yeungnam Medical Science
    • /
    • v.28 no.1
    • /
    • pp.99-104
    • /
    • 2011
  • Essential thrombocythemia (ET), a subcategory of chronic myeloproliferative disorder, is characterized by absolute thrombocytosis due to excessive clonal proliferation of platelets, hyperaggregability of platelets, and increased incidence of thrombosis and hemorrhage. We consider a diagnosis of ET when an unexplained and persistent thrombocytosis is observed. It is difficult to consider ET first when we meet a patient with esophageal varix bleeding or unusual multiple thromboses like mesenteric vein, splenic vein, and portal vein. This article reports a patient who presented initially with esophageal varix bleeding and unusual multiple thromboses, thereafter, she was diagnosed with ET after testing positive for the Janus Tyrosine Kinase 2 (JAK2) V617F mutation. In conclusion, in patients with varix bleeding and unusual multiple thromboses, myeloproliferative disorders like essential thrombocythemia should be considered as a potential cause and testing for the JAK2 mutation is warranted.

  • PDF

The Slough of Cicadidae Periostracum Ameliorated Lichenification by Inhibiting Interleukin (IL)-22/Janus Kinase (JAK) 1/Signal Transducer and Activator of Transcription (STAT) 3 Pathway in Atopic Dermatitis

  • Ganghye Park;Namgyu Kwon;Mi Hye Kim;Woong Mo Yang
    • Food Science of Animal Resources
    • /
    • v.43 no.5
    • /
    • pp.859-876
    • /
    • 2023
  • It is known that animal-origin medicine could be one of effective treatment to remedy atopic dermatitis (AD) by controlling the cytokines. Cicadidae Periostracum (CP), the slough of Cryptotympana pustulata, has been frequently used for treating AD and skin affliction in traditional Korean Medicine. This study is aimed at investigating the ameliorating effects of CP on AD and its potential mechanism. The dinitrochlorobenzene sensitized mice were treated with CP for 2 weeks. The various biomarkers and the dermatitis scores presented that CP treatment can induce the visual and biological improvements of AD model. Pruritus, the most serious symptom of AD, which can cause repeated scratching behaviors and finally lead to lichenification, was reduced with CP treatment by regulating the inflammatory reactions. In addition, CP treatment diminished the number of mast cells that are known for causing inflammatory reactions. Moreover, it is proven that CP can decline secretion of interleukin-22, which means CP treatment has anti-inflammatory effects. CP treatment can correct the imbalance of helper T (Th)1 and Th2, downregulating thymic stromal lymphopoietin that leads to decrease of mRNA level of inflammatory cytokines. The crucial role of CP treatment is controlling of the Janus kinase 1/signal transducer and activator of transcription 3 pathway. In addition, CP treatment has the inhibitory effects on kallikrein related peptidase (KLK) 5 and KLK7. Taken together, CP treatment can ameliorate most symptoms and problems caused by AD disease, improving the AD patients' life quality.

Clinical Manifestations and Risk Factors for Complications of Philadelphia Chromosome-Negative Myeloproliferative Neoplasms

  • Duangnapasatit, Boonlerd;Rattarittamrong, Ekarat;Rattanathammethee, Thanawat;Hantrakool, Sasinee;Chai-Adisaksopha, Chatree;Tantiworawit, Adisak;Norasetthada, Lalita
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.12
    • /
    • pp.5013-5018
    • /
    • 2015
  • Background: Myeloproliferative neoplasms (MPNs) are clonal hematopoietic stem cell disorders characterized by proliferation of one or more myeloid lineages. Polycythemia vera (PV), essential thrombocythemia (ET) and primary myelofibrosis (PMF) are classical Philadelphia chromosome (Ph)-negative MPN that have a Janus Kinase 2 (JAK2) mutation, especially JAK2V617F in the majority of patients. The major complications of Ph-negative MPNs are thrombosis, hemorrhage, and leukemic transformation. Objective: To study clinical manifestations including symptoms, signs, laboratory findings, and JAK2V617F mutations of Ph-negative MPN (PV, ET and PMF) as well as their complications. Materials and Methods: All Ph-negative MPN (PV, ET and PMF) patients who attended the Hematology Clinic at Maharaj Nakorn Chiang Mai Hospital from January, 1 2003 through December, 31 2013 were retrospectively reviewed for demographic data, clinical characteristics, complete blood count, JAK2V617F mutation analysis, treatment, and complications. Results: One hundred and fifty seven patients were included in the study. They were classified as PV, ET and PMF for 68, 83 and 6 with median ages of 60, 61, and 68 years, respectively. JAK2V617F mutations were detected in 88%, 69%, and 100% of PV, ET and PMF patients. PV had the highest incidence of thrombosis (PV 29%, ET 14%, and PMF 0%) that occurred in both arterial and venous sites whereas PMF had the highest incidence of bleeding (PMF 17%, ET 11%, and PV 7%). During follow up, there was one ET patient that transformed to acute leukemia and five cases that developed thrombosis (three ET and two PV patients). No secondary myelofibrosis and death cases were encountered. Conclusions: Ph-negative MPNs have various clinical manifestations. JAK2V617F mutations are present in the majority of PV, ET, and PMF patients. This study confirmed that thrombosis and bleeding are the most significant complications in patients with Ph-negative MPN.

Neuroprotective potential of imatinib in global ischemia-reperfusion-induced cerebral injury: possible role of Janus-activated kinase 2/signal transducer and activator of transcription 3 and connexin 43

  • Wang, Jieying;Bai, Taomin;Wang, Nana;Li, Hongyan;Guo, Xiangyang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.1
    • /
    • pp.11-18
    • /
    • 2020
  • The present study was aimed to explore the neuroprotective role of imatinib in global ischemia-reperfusion-induced cerebral injury along with possible mechanisms. Global ischemia was induced in mice by bilateral carotid artery occlusion for 20 min, which was followed by reperfusion for 24 h by restoring the blood flow to the brain. The extent of cerebral injury was assessed after 24 h of global ischemia by measuring the locomotor activity (actophotometer test), motor coordination (inclined beam walking test), neurological severity score, learning and memory (object recognition test) and cerebral infarction (triphenyl tetrazolium chloride stain). Ischemia-reperfusion injury produced significant cerebral infarction, impaired the behavioral parameters and decreased the expression of connexin 43 and phosphorylated signal transducer and activator of transcription 3 (p-STAT3) in the brain. A single dose administration of imatinib (20 and 40 mg/kg) attenuated ischemia-reperfusion-induced behavioral deficits and the extent of cerebral infarction along with the restoration of connexin 43 and p-STAT3 levels. However, administration of AG490, a selective Janus-activated kinase 2 (JAK2)/STAT3 inhibitor, abolished the neuroprotective actions of imatinib and decreased the expression of connexin 43 and p-STAT3. It is concluded that imatinib has the potential of attenuating global ischemia-reperfusion-induced cerebral injury, which may be possibly attributed to activation of JAK2/STAT3 signaling pathway along with the increase in the expression of connexin 43.