• Title/Summary/Keyword: Jansen mechanism

Search Result 46, Processing Time 0.017 seconds

Walking robot Optimum Design by Jansen's mechanism (Jansen's Mechanism 기반의 보행로봇 최적설계)

  • Kim, Taehyun;Seo, Hankook;Lee, Seohyun
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.443-454
    • /
    • 2016
  • This study focus to make 8 legs robot based on Jansen's mechanism. In the process of making, we found GL(Ground length),GAC(Ground Angle Coefficient) and the height difference of tract and compare Several models with M.Sketch to find link's Length ratio Optimised simple walking and crossing of obstacles. In the process, our team Analyzed the difference ideal tract (Jansen holy number model's track) contrived by Jansen and our final model tract. As a result, we found optimal link's length ratio to over the obstacles and some features that our model differ from Jansen holy number model. It means that optimal link's length ratio depends on certain circumstances, perfect length ratio is nonexistent.

  • PDF

Design of optimized legged robots for safety structure using Jansen Mechanism and m.Sketch (Jansen Mechanism 과 m.Sketch 를 활용한 보행 로봇의 안전 최적 설계.)

  • Woo, Minhyuk
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.469-472
    • /
    • 2016
  • Jansen Mechanism has been a constant popularity by researchers studying legged robots because of many benefits. This paper proposed the design process of optimized legged robots using Jansen Mechanism and m.Sketch(Jansen Mechanism simulation software). First, driving part of legged robots is designed in compliance with the design regulations of a competitive exhibition. Second, setting the length of link and position of joint is conducted in keeping with the constraints. Third, Ground Length (GL) and Ground Angle Coefficient(GAC) values are extracted by m.Sketch simulation. Finally, by repeating the previous procedures, comparing the GL and GAC values, find the optimum input values. This.

  • PDF

Designing walking robot using Theo Jansen Mechanism (Theo Janson Mechanism 을 이용한 보행 로봇 설계)

  • Lee, Byeongcheol
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.411-416
    • /
    • 2016
  • Existing moving robots has several kinds of moving method; using wheel, jointed leg structure and so on. Wheel type can be operated by DC motor so it is simple and efficient. However, it is not appropriate to pass irregular terrain and obstacle. Leg structure type has an advantage in those cases. Generally, Leg structure is operated by several servo motors attached to each joint. It makes a robot heavier and more complicate due to increase of the degree of freedom. However, by using Theo Jansen Mechanism, one (or more) leg have only single-degree of freedom and can be operated by only one DC motor. So leg structure using Theo Jansen Mechanism will be good choice if robots have to be mass-produced. This paper describes the following a walking robot designed and produced based on Theo Jansen Mechanism, simulating process of Theo Jansen leg structure using Edison m.Sketch and how to solve several of discovered problem of the robot.

  • PDF

Design of Walking Robot Based on Jansen Mechanism for Non-uniform Ground Surface (균일하지 않은 지면 보행을 위한 얀센 메커니즘 기반의 보행로봇 설계)

  • Jeong, YunWoo
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.481-484
    • /
    • 2016
  • Jansen mechanism is basic principal of walking robot. Because that mechanism have many link, walking robot can walk like animals. One of the feature is that space is existed between leg of walking robot and ground surface. So, it can walk through the non-uniform ground surface that have obstacle. In this paper, I will suggest design of walking robot that can walk on non-uniform ground surface effectively based on Jansen mechanism.

  • PDF

Jansen Mechanism Walker Made with EDISON Science Box (EDISON 과학상자를 이용한 얀센 메커니즘 보행 기구 제작)

  • Jang, Hoik;Lee, Hyeongbeom;Lee, Junghyeok
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.434-442
    • /
    • 2016
  • Jansen mechanism is composed of mechanical walking linkages that are designed and optimized by Theo Jansen in 1990. Although he has made optimum values for linkage dimensions for Jansen Mechanism, there are still various applications for this mechanism and also various optimum values for each application. In this paper, Jansen Mechanism optimization has been processed for the Science Box. The Science Box has its own linkage dimensions and related components and makes space for optimization process. For the optimization 3 to 4 linkage were selected which had no similar ratios of linkages between other applied Jansen mechanisms and to reduce experiment numbers. Response Surface Method was used with Minitab 17 for optimization and m.sketch was used for experimentation. Intuitive method had to be used to find optimum values as with RSM optimum value could not be found. EDISON Designer was used to make final CAD model with optimum values and laser cutter was used to get appropriate acryl panels for legs.

  • PDF

Optimized design of Jansen mechanism based on target trajectory tracking method using multi-objective genetic algorithm (Multi-objective Genetic Algorithm 을 이용한 얀센 메커니즘의 목표 궤적 트래킹 기반 최적 설계)

  • Heo, Joon;Hur, Youngkun
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.455-462
    • /
    • 2016
  • Recently, followed by rapid growth of robotics field, multi-linkage mechanism which can even pass by rough road is getting lots of attention. In this paper, I focused on Jansen mechanism. It's a kinematics object which is named after Dutch artist Theo jansen. Jansen mechanism embraces structure and mechanism which creates locomotion with the combination of the power and simple structure. Theo jansen suggests a 'Holy number'. It's an ideal ratio of leg components length. However, if there's desired gait locomotion, you have to adjust the ratio and the length. But even slight change of the length could cause a big change at the end-point. To solve this problem, I suggest a reverse engineering method to get a ratio of each links by nonlinear optimization with pre-set desired trajectory. First, we converted a movement of the joint of Jansen mechanism to vectors by kinematics analysis of multi-linkage structure. And we showed the trajectory at the end-point. After that, we set desired trajectory which we found most ideal. Then we got the length of the leg components which draws a trajectory as same as trajectory we set, using Multi-objective genetic algorithm toolbox in MATLAB. Result is verified by Edison designer and mSketch. And we analyzed if it could pass through the obstruction which is set dynamically.

  • PDF

Design of Robot Using of Jansen Mechanism (얀센메커니즘을 이용한 로봇 설계)

  • Kim, beong jin;Kim, hyeon min;Lee, hyo jung
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.501-505
    • /
    • 2016
  • In this study, a robot is implemented in H/W based on four-bar linkage mechanism and Jansen mechanism. Our goal is to finish the given path using given terms. The various programs was used to understand the mechanism in more detail. DISON m.Sketch, EDISON Designer, Theo Jansen Mechanism Optimization Solver. Using these programs, we can design the robot in more dtails and reduce errors and trials. For the design and implementation of a robot, it is need to get joint variable, a foot point, and their relation. Thus, the proposed kinematic analysis is very important process for the design and implementation of legged robots.

  • PDF

Optimized design of walking device based on Theo Jansen Mechanism for securing stability and speed (Theo Jansen Mechanism 기반 보행 기구의 최적 설계를 통한 구동의 안정성 및 속도 확보)

  • Kim, KyungHoon;Kim, SeungYeon
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.513-515
    • /
    • 2016
  • There are various walking devices based on Theo Jansen mechanism. And these systems controlled by complicate equations. So we decided to optimize the design of walking device with two points of view. The device is required to ensure stability while maintaining the high speed. To simplify the control system, we applied trigonometric ratio with ideal Jansen trajectory. As a result, we were able to draw the connection between height of barrier and Ground Length (GL). Also we could change traveling distance and Ground Angle Coefficient (GAC) by shifting the position of the joints. Through controlling these parameter, we can analyze stability and speed of the device. Ultimately, we develop the device that can walk more efficiently by the optimization process.

  • PDF

Design Walking System Based on Theo Jansen Mechanism (얀센 메커니즘 기반의 보행 기구 설계)

  • Lee, Hyeonkyeong;Yun, Yungkyu
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.404-410
    • /
    • 2016
  • Compared to wheel locomotion, walking has many advantages : Better to cross over obstacles, the contact with ground is in a determined point, the ground is damaged less. Because Theo Jansen mechanism can make walking motion that is very soft, there are many researches about that mechanism. In this paper, We designed walking robot based on Theo Jansen mechanism. Most important design factor is velocity and stability. First of all, we considered kinematics knowledge and then, we made a new model by using simulation. Finally we developed the model by solving few design problems.

  • PDF

Simulation-based Jansen mechanism utilizing walking robot of the design and implementation in order to implement the best walking movement. (최적 보행 동작 구현을 위한 시뮬레이션 기반 Jansen Mechanism 활용 보행 로봇 설계 및 구현.)

  • Kim, Heechan;Kim, SeungHa
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.467-468
    • /
    • 2016
  • The importance of the recent manufacturing industry have been made to invest in a lot of assistance and human resource development at the national dimension in which to rise again. However Learned in actual school education kinetic, and the use to how product design structural knowledge, Often it feels vague unlikely whether it is possible to derive an optimal product. In this study, by using the simulation-based Jansen Mechanism designed a walking robot, after optimization of the numerical consideration when designing for optimum walking motion, through simulation through the actual production resulting numerical information is examined whether valid. In addition, through the actual production was walking robot, to verify the validity of the simulation-based design.

  • PDF